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ABSTRACT

The mathematical properties of the arctangent function are investigated, revealing
the mechanism of error propagation in digital phase-shifting applications. The
analysis gives a systematic approach to the assessment of errors and, as such,
provides a valuable tool for understanding the propagation of errors in any
phase-shifting algorithm.

1. INTRODUCTION

High precision phase measurements in both interferometric and non-interferometric
structured illumination systems rely heavily on phase shifting techniques !,2.
Several papers have shown that the generalised phase-shifting algorithm can be
derived from the least squares method 3,4¢. The calculation of phase in any
phase-shifting algorithm involves the ubiquitous arctangent function. Al though
many papers 5-19 have been published about the effects of various systematic and
random errors on the final calculated phase, little, if any, attention has been
given to an important and universal property of the arctangent function - namely
frequency-shifting. This refers to phase measurement errors having specific
frequency components being propagated to the calculated phase at frequencies that
differ from those of the source errors. When phase errors are considered in this
way, error propagation mechanisms are combined in one systematic process which is
easier to understand than the previously reported ad hoc analyses. As a result,
sources of error can be readily identified and the susceptibility of different
algorithms to these errors can be easily assessed.

2. PHASE CALCULATION EXPRESSIONS

The calculation of the phase in virtually all phase-shifting techniques is derived
from the expression:

- S (x.¥)
9(x,y) = arctan [ c(x.y) + 2m7 (1)
where $(x,y) is the two dimensional phase distribution as a function of the

spatial coordinates x and y,
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S (x,y) and C(x,y) are quadrature functions derived from a number of
interferograms (or intensity maps) using a predetermined algorithm.
m is an integer chosen to allow the arctangent function to be
calculated modulo 2r7. Its effect can be ignored in the following
analysis.

From equation (1) it follows that:
S (x.y)

C (x.y)

where B(x,y) is the amplitude of S and C functions.

B(x,y) sin &(x,y) (2)

B(x,y) cos $(x,y) (3)

Errors encountered in phase measurements - for example, phase-shift errors,
non-linearities and multiple interference beams - can be represented as a
combination of errors in the numerator and denominator of the argument of the
arctangent. The trivial effect of phase quantization will be ignored here.

The actual numerator, denominator and phase in the presence of errors can be
defined as follows:

actual numerator S’ =S + AS
actual denominator C’ =C + AC (4)
calculated phase & =& + A% | |

where AS , AC, and A% are the errors in the numerator, denominator and phase,
respectively.

The explicit variation with x and y has been dropped for simplicity. The actual
phase calculation is now given by:

¢’ = arctan [ %; ] . (5)

Using the following trigonometric identity:

tan (8 + AB) = tan § + tan A% ’ (6)
1 - tan & .tan A%

and equations (2), (3) and (5), the phase error can be written as

AS cos & - AC sin @ (7
B+ AC cos & + AS sin &

tan A® =

However, it is much more useful to represent the errors in normalised form.

If e(x,y) is the normalised error in the numerator
and €(x,y) is the normalised error in the denominator,
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B
\c (8)
and €= §
Consequently, equation (7) can be written as
tan A® = _€ €OS $ - € sin & (9)

1+ ¢€¢€cos ® +e sin ®

A less general form of this equation has appeared in different guises
5,7,8,0,10 16 18 19 for specific errors. However, the universal significance of
(9) does not appear to have been noted in any of the above references.

3. APPROXIMATION TO PHASE ERROR CALCULATIONS

Although equation (9) is exact and valid for all types of errors,it is often
adequate to use an approximation which has sufficient accuracy for the range of
errors encountered. Otherwise, the wuse of equation (9) is recommended.

The arctangent function can be expanded as a power series:

3

5
arctan p = p - + g— + 0 (p7) (10)

wl'U

for [p? < 1], where O(p’) includes all terms of order seven and above. For
example, the first term alone may be used with less than 1% error if p satisfies
the following criterion.

| p| <0.17 . (11)
Or, equivalently:

| arctan p | < 0.17 (9.7°) . (12)

The reciprocal of the denominator in (9) can be approximated by the binomial
expansion as

(1 +esin®+ ¢ccos )1 =1-esin® - ¢ cos & + 0 ([error]?) (13)
where O([error]?) includes all second order and higher terms in e and ¢.
Combining equations (9), (10) and (13) gives:

A% = e cos & - ¢ sin &

(€2 - e?)

+ p)

sin 2¢ - €¢e cos 2¢ + O ([error]3) . (14)

SPIE Vol. 1755 Interferometry: Techniques and Analysis (1992) / 221



Consider the first order approximation, 0%,
Aé = 6, + O ([error]?) , (15)
0%, = e cos & - ¢ sin & . (16)

The second order approximation 6%;, can be defined similarly:

Aé = 6%, + O ([error]3) , (17)
%, = 68, + LE;:EE) sin 2¢ - ce cos 2¢ . (18)

Equation (16) shows clearly that the approximate phase error is the sum of the
numerator error (e) modulated by cos ® and the denominator error (€) modulated
by sin €. An analogy with amplitude modulation in communication theory is
apparent. Amplitude modulation results in a carrier frequency shifting a signal
frequency into two sidebands; one at the sum frequency, the other at the
difference frequency. Here the carrier frequency is represented by & and the
signal by e and ¢ both of which can be expressed as a Fourier series (see
section 4).

To assess the validity of the first order approximation, let D; be the
difference between the exact phase error and the first order approximation to
the phase error. From equations (15) and (18) it follows that

D, = A% - 4%, = LE%:EE) sin 2¢ - ¢ce cos 2¢ + O ([error]3) (19)

Typically, with 8 bit digitization, it is desirable that the calculation of
phase and phase error should be accurate to = } level in 256 levels, hence

D <2r. 2% . L radians . (20)
5 956

This defines the valid range of approximation for modulo 27 phase measurement.
There are 3 extreme cases for which (16) should be valid:

T

() e=02 | €2sin 28 | < 155 * |e] < 0.157 (21)
. T ,

(b) € =02 | -e?sin 28 | < 35 ? le] < 0.157 (22)

(c) € =1e 3 | +e2cos 2% | < 5%6 3 |e| < 0.111 (23)

Case (c) is the most stringent requirement. In conclusion, the first order
approximation has no significant error if the following conditions are met:
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le|] < 0.111 (24)
|e] < 0.111 (25)

If the errors exceed the above limits, then equation (14) may be more suitable
for calculations. Equation (14) clearly shows how inter-modulation and
cross-modulation terms are shifted by 2¢. However these terms are a much
smaller than those in 6%;. and, therefore, the following analysis will consider
only the terms which appear in equation (16).

4. FREQUENCY-SHIFTING OF ERRORS

Many papers 2,4,5,8-11 14-16 18 have noted the ¢, 2%, 3% and 4% dependence of
phase errors. The explicit (n+1)® dependence has been discussed recently !9.
However, in this same paper, the (n-1)# dependence is overlooked although it is
implicit in some of the comprehensively filled tables of phase measurement
errors. The generalised (n+1)# and (n-1)% dependence will now be derived. The
key to this derivation is in writing both e and ¢ as Fourier series. The
following series represent the harmonic components of the normalised errors
defined in equation (8).

o
1]

N
e(x,y) = §=0 en(x,y)cos[n#(x,y)+an] (26)

22

0 €n(x,y)cos[né(x,y)+fy] (27)

)
1}

€(x.y) =

where a, and [, are phase offsets.
The values of n correspond to the following error sources:

n = 0 corresponds to errors independent of phase, for example any
intensity offset which varies from sample to sample in the
phase-shif ting process,

n = 1 corresponds to errors directly related to the phase, for
example, phase-shift errors,

n = 2 corresponds to errors produced by the detector non-linearity or a
second harmonic in intensity,

n = 3 corresponds to errors produced by detector non-linearity of third or
higher order, or a third harmonic in intensity.

Equation (16) can now be rewritten:

=N o 1

6’1 =

, encos % cos(n® + a,)

|
=2

co €psin @ cds(nf + [fn) - (28)
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Using the standard trigonometric identities in equation (28) results in

0%, = en {cos ([n+1]® + ap) + cos ([n-1]¢ + ay)} /2

=0

SM=

1
=N oo

., €n {sin ([n+1]® + ) - sin ([n-1]¢ + f,)} 72 (29)

Equation (29) is an important result since it gives explicitly the sum and
difference frequencies of phase errors inherent in the arctangent calculation.
Harmonic components of the phase error can now be linked directly to their
sources in the numerator and denominator of the arctangent argument. Because of
the general nature of this analysis, all the preceding results are valid for any
technique which evaluates the phase from an arctangent function. This means
that Fourier transform and spatial synchronous techniques are covered as well as
the phase-shifting techniques considered here.

It is important to note that an error in the numerator or denominator of the
arctangent argument with an harmonic component at n® will result, generally, in
an error in the calculated phase with harmonic components at both (n+1)#® and
(n-1)®. However, if e, and ¢, have a certain quadrature relation then either
the (n-1)% or the (n+1)$ terms can cancel out. This may explain the absence of
an explicit (n-1)¢® in previous literature !9.

When the numerator and denominator errors occur at the fundamental frequency
(n=1) the frequency-shifted phase error components occur at the zero and 2%
harmonics. The zero (or DC) harmonic has previously been considered a mere
artifact of the process. In the light of this new analysis the DC term is just
another occurrence of the (n-1)# harmonic.

5. APPLICATION OF ARCTANGENT ANALYSIS TO PHASE-SHIFTING ALGORITHMS

The power of this error analysis technique should not be underestimated although
the arctangent function evaluation is just one (last) step in the application of
a phase-shifting algorithm. The full process is illustrated schematically in
figure 1. Not shown are noise sources which could be inserted at any points in
the signal flow to represent actual measurement processes. The first step shown
is the effect of detector nonlinearity on the input signal g(x,y.t). Here t is
a general phase-shift parameter which may be a temporal or spatial quantity

18 20 Much phase-shifting interferometry today uses CCD detector arrays which
are highly linear in the usual operating range. Consequently step 1 may be

omitted in many cases. So for linear detectors the signal g is just a scaled
version of g with scaled harmonic content. Step 2 can be considered as two

discrete correlations in which each sample of the signal g has weights A; or Bj.
The weights A, and B, define the phase-shifting algorithm. This step can be
considered - equivalently - as a linear filtering process. Again only harmonic
components already present can get through. In fact some harmonics are
suppressed and others enhanced?,5,6,18 19 For example the common four-sample
(90° ) algorithm suppresses the second harmonic. Step 2 of figure 1 only
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Figure 1. Phase-shifting process - schematic

represents the operation of fixed-step algorithms which account for most
algorithms in use. Adaptive-step algorithms - Carre’s?! for example - cannot be
represented by a linear filtering process. With some small modifications we can
incorporate the Carre algorithm but the resultant nonlinear filter can now
generate new harmonic components from its input.

The filter process always occurs before the frequency-shifting arctangent
operation. Step 3 of figure 1, is the arctangent evaluation. The crucial point
here is that for linear detectors (eg CCD) and fixed-step algorithms it is only
the arctangent which generates harmonic components not necessarily present in
the input signal g. This harmonic generation process as outlined in section 4
can provide valuable insight into the error propagation process. A full
computer simulation on the other hand, although producing exact outputs,
nevertheless obscures the error propagation mechanism and does not readily allow
the user to identify critical process parameters suitable for optimization
(except by trial and error).

The frequency-shifting effect of the arctangent can be utilised for diagnostic
purposes. From the harmonic content of the calculated phase inferences can be
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drawn about the input signal or the algorithm defects. Systems with
non-sinusoidal signals such as multiple-beam interferometers or projection moire
systems can greatly benefit from such diagnostics. During our experiments with
a phase-shifting moire profilometry setup 23, the error-compensating 5-sample
algorithm !¢ was found to produce a significant amount of phase noise at 4%.
Fourier analysis of the phase also indicated 2% noise but no components at 6¢.
The tentative conclusion was that 3% (third harmonic) components must exist in
the numerator and/or denominator. Further analysis of the algorithm revealed
that a large third harmonic component in the projected grating intensity could
be responsible. This was confirmed later by detailed intensity measurements.
The frequency-shifting approach simplified the diagnosis in this instance.

Finally, equation (9) reveals that a general condition for zero phase error A% =
O does not require the numerator and denominator errors to be zero but instead

e = E sin ® and ¢ = E cos ® where E can have any value. It is no coincidence
that the well known 5-sample (90°) algorithm !0 satisfies these conditions even
when phase-shift errors are present. Other algorithms can be designed with this
property 20,22,

6. CONCLUSION

A hitherto overlooked property of the arctangent function has been derived and
used to clarify details of previous ad hoc analyses. The application to
phase-shifting techniques has been outlined in a modular scheme which introduces
a diagnostic technique based on harmonic analysis of phase errors.
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