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Optimal concentration of electromagnetic radiation
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Abstract. For complete spherical concentration of light the maximum
theoretically possible total energy density for a given power input can be, in
principle, achieved by appropriate choice of polarization and angular amplitude
variation. Illumination of a focusing system with a plane-polarized wave creates
at the focus equal electric and magnetic energy densities . By appropriate choice
of radial variation this energy density can be maximized . For hemispherical
concentration the electric energy density can be seven sixteenths of the
maximum possible for a given power input, and the total energy density can
be seven eighths of the maximum possible . Focusing by optical systems
satisfying the sine condition amongst others is also considered . For a system
satisfying the sine condition, the total energy density can be is of the maximum
possible .

1 . Introduction
Bassett [1] has established an upper bound to the energy density which is

attainable by passive concentration at any point 0 for a given input power . He
assumes that the point is many wavelengths from any object and that any
radiation which is subsequently reflected or scattered back to the point can be
neglected. This is equivalent to assuming a high Fresnel number in a focusing
system, that is that the (electromagnetic generalization of the) Debye theory is
appropriate .

Richards and Wolf [2] have considered the electric and magnetic energy
density in the focal region of a lens satisfying the sine condition in the Debye
approximation. It is interesting to consider how close a real focusing system can
come to the maximum attainable energy density given by Bassett . Later workers
have generalized the method of Richards and Wolf to other illumination
distributions, including Gaussian weighting, annular pupils, parabolic mirrors
and so on [3-6] .

Bassett's method is to expand the field in terms of a multipole expansion . These
multipole fields are Green functions, that is they satisfy Maxwell's equations for
any point other than the point O . The field at 0 vanishes for any other than the
electric and magnetic dipole components. Bassett's upper bound is the energy
density produced from a combination of these dipoles, each oriented in three
orthogonal directions . Thus this upper bound can be achieved by illumination with
a combination of these dipole fields . Sheppard [6] has shown that the polarization,
as given by Richards and Wolf [2], produced when a plane-polarized wave is
refracted to produce a spherically convergent wave is the same as that for the sum
of an electric and a magnetic dipole whose axes are two orthogonal directions in the
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focal plane . Thus with appropriate weighting the plane-polarized wave can be
coupled completely into electric and magnetic dipole fields .

2 . Energy density at the focus for mixed-dipole fields
Consider a focusing system in which the monochromatic illumination over

the Gaussian reference sphere has a polarization given by Richards and Wolf
[2] for focusing of a plane-polarized wave, that is it is the sum of two orthogonal
electric and magnetic dipole fields and has an electric field amplitude E;(B) which
is axially symmetric . Then, if the radius of the reference sphere is f, and a is the
angular semiaperture of the optical system (figure 1) the power flow into the
system is

/E\
1/2

S = of 21 - 1
f IE;(B)I2 sin B dB .1
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o

The electric field amplitude at the focus 0 is given by Richards and Wolf [2] as

f2,7E2 a
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The electric energy density at focus is

We introduce the factor Fe (the normalized electric energy density) given by
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Figure 1 . Geometry of concentration .
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O=-nit
Figure 2 . A polar plot of the illumination power incident on the focus 0, normalized to unity

for B = 0, for various conditions . In particular, p + m refer to the case of an electric dipole
field, oriented along the x axis, and a magnetic dipole field, oriented along the y axis
(mixed-dipole field) .

and then, when a = n,

k 2

	

k2
Fe 1671, I

(1 +cos 0) 2 sin 0 d9 =
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In a similar way we obtain an equal value for F,,,, the ratio of the magnetic energy
density to the input power, so that the normalized total energy density

k2
F= 3nc'

	

(7)

which is identical with Bassett's upper bound. This particular choice of illumination
distribution matches the field of the sum of an electric dipole and an orthogonal
magnetic dipole . We therefore shall refer to it as a mixed-dipole wave . It is the
electromagnetic analogue of Stamnes' [7] perfect wave . It can also be regarded as
the electromagnetic generalization of the Luneberg [8] apodization problem . The
illumination power varies as (1 +cos0) 2 , that is it decreases to zero as 0-n.
The illumination power, normalized to unity in the forward direction, is shown as
a polar plot in figure 2, where it is also compared with other illumination
distributions [9] . In particular, for a system satisfying the sine condition, for which

E;(0) = cos 1 / 2 0,

	

(8)

the illumination pattern is quite similar to the mixed-dipole case, so that we expect
that the energy density which can be achieved is almost as high. For a mixed-dipole
wave, equal electric and magnetic energy densities are excited, so that the electric
energy density can only be half that of Bassett's upper bound . The value of Fe for
systems of different aperture is shown in figures 3 and 4 . For hemispherical
illumination the mixed-dipole case can achieve a total energy density of seven eighths
of the upper bound, or an electric energy density Fe = bk2/3rtc . The results are
summarized in table 1 . For an arbitrary system illuminated with a plane wave, the
radius r in the pupil plane is related to the angle subtended at 0 by [8]

r = fg(0) (9)
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Figure 3 . The ratio of the electric energy at the focus to the incident power, as a function
of the angular semiaperture a for various different conditions .
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a
Figure 4 . The ratio of the electric energy at the focus to the incident power, as a function

of the angular semiaperture a for various different conditions . A system obeying the sine
condition behaves very similarly to the mixed-dipole field .

Table 1 . F, and F values for various conditions .

Fe(+ n)

	

F(17c)

and expressions for g(0), and the resulting weighting functions a(O) given by [10]

a(O) = ((O)?(0))lf2b'b' (10)
sin 8

are given in table 2 after normalizing to unity for 0 = 0 . As the case of the
sine condition gives very similar results to the mixed-dipole case, the former is not
shown in figure 3 but instead is illustrated in the expanded plot in figure 4 . It
should also be noted that all the cases with mixed-dipole polarization exhibit the
same behaviour for small values of a . Explicit expressions for F e(a) are also given
in table 2 .

3. Energy density in the focal region for a mixed-dipole wave
The mixed-dipole wave produces for hemispherical illumination a normalized

total energy density greater than half the maximum possible . This results because

Mixed dipole 0 . 437 0 . 875
Sine 0 . 427 0 . 853
Herschel 0 . 422 0 . 844
Optimum at a = arccos i 0 . 444 0 . 889
Parabolic mirror 0. 375 0 . 75

31tFe c/1< 2

0 .6

0 .55

0 .5

0 .45

0 .4

0 .35

p+m
sine

Herschel

parabolic mirror

0 .4n 0 .42rc 0.44rc 0.46n 0.48n 0 .5ic
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Table 2 . g(6), a(O) and 61tcFe(0)/k 2 values for various conditions .

the field of the mixed-dipole tends to cancel out in the backward direction. The
variation in the polarization of the mixed-dipole wave is shown in figure 5 . The wave
is almost plane polarized in the forward direction C and exhibits a singularity in
polarization in the backward direction A .

The field in the focal region of the mixed-dipole wave can be calculated from the
expressions of Richards and Wolf [2] . For the complete mixed-dipole wave (a- 7t)

the integrals of Bessel functions for the field in the focal plane can be evaluated using
the identity (equation (11 .4 .10) in [11])

J "'ZJJ(zsint)sin" +1tcos2°+ttdt=2V z(v+1) Jµ
+v+t(z) .

	

(11)
0

The field in the focal plane can be expressed in terms of the following
integrals :

j Jo(z sin t) sin t dt = 2jo (z),

	

(12)
0

Figure 5 . The polarization of the mixed dipole field (after [6]) . The point C corresponds to
0 = 0 and A to 0 it .

Condition g(0) a(6) 6JtcFe (0)/k2

Mixed dipole 2 sin (10) [1 - I sin 2 (40)] 1/ 2 cos t (46) 1 - cosh (}a)

Sine sin 8 cos t 2 B is [1 - j cos 312 a (1 + s cos a)] 2
sin 2 a

Herschel 2 sin (10) 1 3 sin 2 (la) [1 - i sin2 (4a)] 2

Parabolic mirror 2 tan (40) sec t (40) ; sin 2 a

0
0

	

i/2

sin 0)
Lagrange

Helmholtz tan 0 sec3/2 6



where j„ is a spherical Bessel function of the first kind and order n .
An alternative approach, which gives the field anywhere in space directly in

closed form, is by using the well known expressions for the fields of electric and
magnetic dipoles [12] . At any point in space the total field is given by the sum of an
outgoing and an incoming wave, giving for an electric dipole oriented along the
negative x axis, in cylindrical coordinates p, 0, z and spherical radius r :

p2

	

z2
Ep = ([jo(kr) + aj2(kr)] r2 +j2(kr)

3p2

4r2 cos (20) + [jo(kr) - jj2(kr)] 4r2) i

3p 2

	

3pz
+ j2(kr)4r2 sin (20) j + j2(kr)

2r2
cos 0 k .

This expression has been normalized to unity at the origin . Similarly for a magnetic
dipole oriented along the y axis,

Em = [jo (kr) + j2(kr)]4 i(kzi - kp cos Ok)

=JI(r) 2i(z i -
p coso k)

	

(17)
r

	

r

Figure 6 shows the electric energy density along the three axes for the electric dipole,
the magnetic dipole and the mixed dipole . In each case the variation {[sin (kr)]/kr}2,
the intensity for a full spherical scalar wave [13], is shown for comparison . Plots of
the electric energy density in the focal plane (figure 7) and in planes containing the
axis (figures 8 and 9) are also shown. It is seen that the electric energy density along
the x direction actually exhibits a minimum at the origin, so that the maximum
electric energy density is slightly greater than half Bassett's upper bound (equal to
0 . 577 at kz = 0 .94). We can see that the mixed-dipole wave for plane-polarized
illumination is thus not suitable for imaging applications . However, for circularly
polarized illumination the electric energy density is circularly symmetric and
reduces to

We = jo(kp) + zjo(kp)j2(kp) + aj2(kr) + sji(kr),

	

(18)

which is shown in figure 10 .
Along the z axis the field for the plane-polarized case is given by

E = [jo(kz) - + j2(kz) + 23-i ji (kz)] i

	

(19)

so that the phase is

3j,(kz)

	

l
'P = arctan

2jo(kz) - j2(kz)l

	

(20)
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J:Jo(z

n

sin t) sin t cost t dt =
2
ji(z) _ Mjo(z) + j2(z)],

z
(13)

fRJl (z sin t) sine t dt = 2j1(z), (14)
0

jJ2(zsint)sin3 tdtzrr
n

	

2j2(z), (15)
0



Optimal concentration of radiation

	

1501

10

Figure 7 . The electric energy density in the focal plane for the mixed-dipole field, a = n .

kx

ky

kz

Figure 6. The electric energy density along the x, y and z for an electric dipole field p, a
magnetic dipole field m and the mixed-dipole field p + m for a = it . The function
{[sin (kr)]/kr} 2 is also plotted (---) for comparison .
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Figure 8. Contour plot N of the electric energy density in they-z plane for the mixed-dipole

field, a = tt .
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Figure 9 . Contour plot N of the electric energy density in the x-y plane for the mixed-dipole
field, a = it .

This is shown in figure 11 with a phase kz suppressed, illustrating the well known
phase change of - rt through focus (the phase anomaly) .

4 . The hemispherical mixed-dipole wave
If the mixed-dipole wave is truncated, although it matches the field of the mixed

dipole exactly within the aperture the truncation results in the generation of
multipole terms. For a mixed-dipole wave for a = In it is still possible to evaluate
the integrals for the field in the focal plane using equation (11) . We obtain, after
normalizing to unity at the origin,

4
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10
kp

Figure 10 . The electric energy density along a radius in the focal plane for circularly
polarized illumination, a = n .

-10

-n/4

-7t/2
Figure 11 . The phase along the axis for the mixed-dipole field, a = it . A phase kz has been

suppressed .

The resulting electric energy density along the x and y axes is illustrated in
figure 12 . Also shown is the electric energy density for illumination by circular
polarization, which is seen to decrease monotonically in the radial direction . An
interesting observation is that the electric energy density for plane-polarized
illumination exhibits zeros, which is different from the behaviour for a system
satisfying the sine condition. The variation in electric energy density in the focal
plane for this case is illustrated in figure 13 .

5 . Discussion
The polarization after focusing which is produced by a focusing system

illuminated by a plane-polarized plane wave is identical with that of crossed electric
and magnetic multipoles placed at the focus . It can be shown that for a particular
form for the angular weighting of the wave incident on the focus a series of multipole
terms is excited, and the energy density at focus is maximized by choosing an angular
weighting which maximizes the dipole terms . The untruncated mixed-dipole wave
produces a total energy density at focus equal to the maximum which is physically
possible . If the same angular weighting is truncated, higher-order multipole terms
are excited and the energy density at focus is reduced, but the same angular weighting
as for the mixed-dipole wave maximizes the focal energy density . Similarly, other
forms of angular weighting also result in higher-order multipole terms . A system
satisfying the sine condition can achieve 75 of the maximum allowed total energy
density. It should prove possible to design optical systems to produce the
mixed-dipole weighting, but the improvement over a system satisfying the sine
condition is small .

n/2

n/4

kz 10
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02

kp
Figure 12 . The electric energy density along the x and y axes for the mixed-dipole field,

o(= in . The expression {[sin (kr)]/kr}2 is also shown for comparison .

10

10
Figure 13 . The electric energy density in the focal plane for the mixed-dipole field, a = In .

It is interesting to note that in scanning imaging systems in which the object is
scanned through the focused radiation spot the image is formed by the process of
scanning itself, and so there is no necessity for the optical elements to form an image
and they only need to concentrate the light to a good focus . Thus the mixed-dipole
weighting could give a small improvement in imaging performance of such systems
compared with those satisfying the sine condition .

For any arbitrary angular weighting, the energy density in the focal region can
be calculated by a multipole expansion rather than by evaluation of the diffraction
integrals of Richards and Wolf [2] . This approach has similarities to the method of
Kant [14], in which he expands the diffraction integrals in a series of orthogonal
polynomials, the terms of which can be associated with terms in the multipole
expansion, and will be discussed in a subsequent paper .
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