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The effect of numerical aperture on the fringe spacing in interferometry is analyzed by the use of wave
optics. The results are compared with published experimental results, and the influence of apodization
of the wave front is discussed. The effects of central obscuration and surface tilt are also considered.
1. Introduction

In interferometric measurements of surface profiles,
the numerical aperture of the system has been shown
to affect the spacing of the fringes, and hence the
calibration of the method. Various theories for this
effect have been described.1–5 Most of the theories
are simplistic and based on geometric optics, although
that of Schulz,5 based on averaging over fringes,
agrees with the present results. A theory for the
general axial phase variation has also been previously
presented.6 This last publication was primarily con-
cerned with confocal imaging, but the results are
equally applicable to conventional interferometric
systems. Various presentations of experimental in-
vestigations have also been given.7–11
An interferometric image consists of three terms.

In addition to the interferometric term, there is a
conventional intensity image and a constant refer-
ence beam term. The interference term can be ex-
tracted by the use of phase shifting or heterodyning.
In general, the conventional intensity term is par-
tially spatially coherent, whereas the intensity term
for a confocal system is fully spatially coherent.12
In confocal microscopes one can extract the interfer-
ence term by changing the modulus of the reference
beam rather than the phase.13
It is found that the phase of the interference term

varies with surface height in a fashion that depends
on the numerical aperture. Far from focus, the
average gradient of the phase variation with height
tends to a value that is independent of numerical
aperture, but near the focal plane the phase gradient
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is reduced. This effect is closely connected with the
phase anomaly in the focal region.

2. Effects of Aperture

We consider an interferometric system with mono-
chromatic illumination. In a Linnik microscope sys-
tem, in which the reference mirror and matched
objective are moved to adjust the phase of the refer-
ence beam, the measured phase determined by phase
stepping is simply the phase of the signal beam.
This is also the case in a heterodyne system, in which
a phase modulator is placed in the reference beam
path, or a confocal system, in which a matched
objective is not necessary. For a level, plane speci-
men, the amplitude of the interferometric term can
be determined simply by integration, with appropri-
ate weighting, over the amplitude of the angular
spectrum of plane-wave components reflected by the
surface. We have6

U1z2 5 e
0

a

P11u2P21u2R1u2exp122ikz cos u2sin udu, 112

where u is the angle of a ray relative to the optic axis,
P1,21u2 are the pupil functions of the illuminating and
collecting lenses, including a cos1@2 u weighting for an
aplanatic system 1i.e., an aberration-free system satis-
fying Abbe’s sine condition2, R1u2 is the reflectivity of
the surface, z is its displacement from the focal plane,
k 5 2p@l, and sin a is the numerical aperture of the
system.
The phase gradient predicted by Eq. 112 depends on

the apodization of the system. To investigate the
effects of apodization we must make a choice of an
appropriate form for the apodization function. Possi-
bilities included Legendre polynomials or various
trigonometric functions. We choose to assume an
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apodization

P1u2 5 cosn u, 122

so that n 5 1⁄2 corresponds to the perfect aplanatic
case. The value n 5 0 corresponds to the case of a
constant angular variation 1the Herschel condition2,
and higher values of n correspond to apodization that
falls off faster with angle. The resultant apodization
functions are illustrated in Fig. 1. It should be noted
that real microscope objectives exhibit an apodization
effect13–15 that results from Fresnel reflections at the
surfaces of the optical elements.
For a perfect reflector and an aberration-free

aplanatic system we thus have

U1z2 5 e
0

a

exp122ikz cos u2sin u cos udu. 132

In the region close to focus we can expand the
exponential function as a power series, keeping just
the first two terms. These can then be integrated
directly to give the phase gradient in this region.
After integration, the ratio of 2kz to the phase, called
the NA factor, is given by

f 5 12n 1 2

2n 1 121
1 2 cos2n11 a

1 2 cos2n12 a2 . 142

This expression agrees with that of Schulz5 for n 5 0
and n 5 1⁄2. The factor is plotted in Figs. 2 and 3.

Fig. 1. Variation in the amplitude of the apodization for different
values of parameter n. The value n 5 1⁄2 applies for a perfect
system satisfying the sine condition.

Fig. 2. Variation in the NA factor 1the height change per half-
fringe2with numerical aperture for different values of parameter n.
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It is greater than unity, indicating that the fringes are
more widely spaced than those for a low-aperture
system. In Table 1 values for particular numerical
apertures are given and comparedwith the experimen-
tal results of Biegen10 and Creath.11 The results of
Biegen agree well with the theoretical results, but for
higher numerical apertures the values predicted for a
perfect aplanatic system are larger than those ob-
served in practice. For example, for a numerical
aperture of 0.95, we need to assume a value of n 5 0.6
to predict the observed behavior.
The phase variation with axial position has been

presented in an analytical form for an aplanatic
system.6 The phase can be differentiated to calcu-
late factor f for an arbitrary distance from focus.
For n 5 0, factor f is independent of focus position,
but for other values of n it decreases away from focus
1Fig. 42. It can become less than unity for axial
positions that correspond to regions for which the
fringe visibility is small. Thus for measurements of
large phase steps, an effective factor should be em-
ployed. In particular, for high apertures the region
over which the factor is constant is small. For
example, for a numerical aperture of 0.95 in an
aplanatic system, the factor drops by 1% for a dis-
tance from the focal plane of only approximately l@4.
In principle, one can avoid this complication by
bringing the surface to the focal plane. Schulz2
considered the measurement phase errors resulting
from the naive application of phase-measuring inter-
ferometry and recommended a calibration procedure

Fig. 3. Variation in NA factor f with parameter n for different
numerical apertures.

Table 1. Values for Particular Numerical Apertures

NA

Theoretical
Observed

n 5 0
1Herschel2

n 5 1⁄2
1sine2 n 5 1 Ref. 11 Ref. 10

0.10 1.003 1.003 1.003 1.003 1.003
0.25 1.016 1.016 1.016 1.007 1.016
0.40 1.044 1.043 1.042 1.024 1.021
0.50 1.072 1.070 1.068 1.036 1.057
0.90 1.393 1.325 1.269 1.215 1.258
0.95 1.524 1.396 1.305 1.228 1.337



that used a large number of closely spaced height
gauges.

3. Effect of Central Obscuration

The results can readily be extended to the case of an
objective with a central obscuration, such as a Mirau
objective. Introducing the obscuration ratio

E 5
sin a0

sin a
, 152

where sin a0 is the numerical aperture of the central
obscuration, we can simply write

f 5 12n 1 2

2n 1 121
cos2n11 a0 2 cos2n11 a

cos2n12 a0 2 cos2n12 a2 . 162

For a perfect aplanatic system the behavior is illus-
trated in Fig. 5. The obscuration has the effect of
further increasing the fringe spacing; the results are
similar to those presented by Schulz.5

4. Effect of Surface Tilt

The phase gradient can be predicted by a simple
model. The amplitude image of a surface can be
evaluated as the Fourier transform of the product of
the three-dimensional coherent transfer function of
the systemand the three-dimensional object spectrum.
The application of the well-knownmoment-derivative
property of Fourier transforms gives the phase gradi-
ent 1along the optical axis2, which is simply propor-
tional to the distance from the origin of the center of
gravity of this product projected onto the axial spatial
frequency axis. This simple relationship is true only

Fig. 4. Variation in NA factor f with distance from the focal
plane: 1a2 n 5 1⁄2, 1b2 n 5 1. For n 5 0, factor f is independent of
focus position.
for real transfer functions, so it cannot be applied to
the investigation of the effects of aberrations.
The object spectrum for a perfectly reflecting sur-

face 1i.e., the reflection coefficient is unity at all angles2
is zero, except along a line in spatial frequency space
normal to the surface. Along this line, the value of
the spectrum increases linearly with the spatial fre-
quency.16–17 The surface thus behaves differently
from a single plane, which does not reflect equally at
all angles. The coherent transfer function for reflec-
tion imaging has been presented elsewhere for a
scalar, high-angle theory.18 For a system satisfying
the sine condition, one can express the coherent
transfer function analytically in terms of elliptic
integrals. Cross sections through the transfer func-
tion at different angles, corresponding to different
surface tilts, are shown in Fig. 6. One then deter-
mines the phase gradient by multiplying this by a
linearly increasing function, corresponding to the
object spectrum, and finding the projection in the
axial direction of the position of the center of gravity.
The resulting NA factors are shown in Fig. 7. When
the surface tilt is equal to the angular semiaperture of
the objective, the NA factor is 1@cos a. This is be-
cause then the only ray that can be reflected back into
the objective is incident normally to the surface.

Fig. 5. Effect of a central obscuration on the NA factor for a
perfect system satisfying sine condition n 5 1⁄2.

Fig. 6. Cross sections through the coherent transfer function for a
system satisfying sine condition NA 5 0.95; K is a normalized
radial spatial frequency.
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It is interesting to note that the fringe spacing
decreases for small tilts and then eventually in-
creases, but it does not change much for tilts smaller
than approximately 35° for a NA of 0.95. Through
the use of this model, for a level surface it follows
immediately that the NA factor for an aplanatic
system of numerical aperture unity is 1.5, whereas for
a uniform angular illumination it is 2.

5. Discussion

The effects of apodization, central obscuration, and
surface tilt on the fringe spacing of interference
images have been considered. Rather than being
lumped together into an empirical effective numerical
aperture, the effects have been investigated separately.
The treatment for a level surface is based on a
complete electromagnetic-field model, but the effect of
tilt is studied by the use of a scalar theory. There-
fore, the variation in fringe spacing with tilt for the
electromagnetic case may differ for intermediate val-
ues of tilt from that presented here.
The theory is based on the evaluation of the phase

gradient of the signal beam with axial position. It is
applicable to systems in which the interference term
is isolated by phase stepping of the reference beam.
This can be achieved in the Linnik configuration
when the reference mirror is moved together with the
matched objective as a unit. If the reference mirror
is moved alone,2 in contrast, then the behavior is
much more complicated because the visibility of the
fringes varies as the reference beam phase is stepped.
This complication is unavoidable in high-NA Mirau
configurations, in which the reference mirror is fixed
and the specimen is moved. Considerable calibra-
tions difficulties ensue and the use of phase-stepping
methods is questionable. Similarly, the behavior of
the complete image, including interference and other
terms, is also more complicated. In particular, at

Fig. 7. Effect of surface tilt on the NA factor for a system
satisfying sine condition NA5 0.95.
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high aperture only a few fringes are observed within
the central lobe of the visibility curve, so that accurate
measurements to a fraction of a fringe are difficult
without correction for the visibility variation.
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