using the level six model of a 1pum CMOS technology, and taking
for each gate output C,,,p = 0.1pF. From Table 1 the following
results can be summarised: the PDP of the QAT-HA is one order
of magnitude worse than the PDP of the adiabatic binary HA
owing to the non fully adiabatic switching, but it is two orders of
magnitude better than the PDP of conventional binary and ter-
nary CMOS HA. The saving of area of the QAT-HA in front of
the fully adiabatic but binary HA is 65%.

Conclusions: A new low-power logic has been presented. It links
adiabatic techniques with the idea of multi-valuation, diminishing
the area needed with respect to other adiabatic binary logics and
keeping a satisfactory power saving.
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Efficient demodulator for bandpass sampled
AM signals

K.G. Larkin

Indexing terms. Signal detection, Nonlinear filters

A simple nonlinear (quadratic) filter is shown to demodulate
bandpass sampled AM signals efficiently. The filter is based upon
a discrete version of the recently introduced Teager-Kaiser energy
operator, but also closely resembles a complex digital sampling
demodulator. Such a filter can also be implemented in analogue
circuitry.

Introduction: Envelope detectors used for signals, such as AM
radio, usually consist of a bandpass filter followed by a nonlinear
element (i.e. a square law detector or rectifier) which is, in turn,
followed by a low pass filter. Implementation of such a scheme in
a digital system is straightforward but inefficient in computational
terms because components such as the low pass filter require IIR
or FIR digital filters with a considerable number of terms. A more
effective alternative such as the complex digital sampling demodu-
lator has a disadvantage owing to oversampling [1]. Recently a
nonlinear filter has been developed specifically for AM and FM
demodulation of sampled speech signals [2]. A similar nonlinear
filter was independently developed for envelope detection in white
light interferograms [3]. The technique, however, is applicable to
any envelope detection analysis; analogue or digital. The mathe-
matical derivation and analysis of the filter has been detailed in a
number of papers [4, 5]. Curiously this analysis assumes that the
minimum sampling frequency is about four times the carrier fre-
quency even though careful inspection of the defining equations
reveals that apparent ‘undersampling’ by odd integer factors is
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also possible as long as the bandpass sampling criterion is satisfied
(strictly the Nyquist sampling rate is determined by the band-
width, but is often used with reference to the maximum fre-
quency). When an already compact and efficient filter is operated
in such an undersampling mode the overall efficacy is enhanced
greatly. This Letter specifically refers to AM demodulation
although a similar analysis can be applied to bandpass sampling
FM demodulation.

Nonlinear envelope detector: Consider a narrowband signal s(r)
with a DC offset
s(t) = a(t) + b(t) cos(2m f.t + ) (1)
where a(?) is the (slowly varying) signal offset, b(7) is the envelope,
/. is the carrier frequency, and © is the phase offset. It can be
shown that the envelope of this signal can be determined from a
minimum of four equispaced samples (with unknown spacing) of
the signal as long as a(r) and b(s) are sufficiently slowly varying
with respect to the period of the carrier [6]. However, using five
samples the solution can have a particularly simple form whilst the
(bandwidth) constraints upon both a(r) and b(r) can be relaxed
considerably. If the separation between samples is T such that A =
2mfx then
4b% () sin*(A) = {s(t + 1) — s(t — 7)}?
— {s(t+27) — s(t)}{s(t) — s(t — 27)}(2)
and
sinf(A)=1 = A=(2n+ 1)% (3)
The undersampling factor in the above equation is (2n+1) where n
is an positive integer. Hence if 1 is chosen to be approximately one
quarter of the carrier period or any odd multiple thereof, then the
gain factor sin¥(A) will be near unity. Eqn. 2 indicates that the
envelope squared can be computed from just five samples using a
difference operation followed by two multiplications. Computa-
tionally this represents a compact and efficient digital demodula-
tor. Fig. 1 shows the circuit equivalent of eqn. 2, which may be
implemented as an analogue or a digital system.

Operation of the filter: The 3dB gain bandwidth of the filter is
controlled by the value of sin‘A in eqn. 2:

(n+0.32)r <A < (n+0.68)7w (4)

In the full sampling case » = 0, and the nominal sampling fre-
quency is four times the carrier frequency. Eqn. 4 then shows well
over an octave of useable gain bandwidth for the squared enve-
lope process.

Fig. 1 Schematic diagram of sampling demodulator based on second
order nonlinear filter

Circuit may be digital or analogue

The operational principle of the overall system can be described
rather simply. The linear difference acts as a simple bandpass filter
with a peak at one quarter of the sample frequency. It is essential
that any unwanted sidebands, including DC, be removed before
quadratic filtering. Quadratic filters are known to produce zero
(baseband) and second harmonic signals from monochromatic
input [6, 7]. Both the squared term and the cross product term of
eqn. 2 produce baseband and second harmonic terms. The relative
phase shifts of both cross-product components combine to pro-
duce a second harmonic exactly in antiphase to that of the
squared term. Such a neat cancellation does not occur at baseband
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so the end result is a square-law envelope detector which removes
its own second harmonics by phased cancellation rather than by
fixed frequency low pass filtering.

An alternative explanation of the operational principle is that
the system is a quadrature receiver (see e.g. Whalen [9]) which
derives the quadrature signal from the input signal rather than
from a local oscillator. A third explanation of the filter in terms of
signal ‘energy’ and its relation to first and second derivatives of
the signal has been particularly fruitful for the development of rig-
orous bounds on performance in relation to noise and bandwidth
parameters [3].

Performance of the undersampling envelope detector: Undersam-
pling has a simple effect: the bandwidth limits determined by
Maragos et al [4] merely have to be reduced in proportion to the
undersampling factor (2n+1). So, for example, undersampling by a
factor of 3 reduces the predicted maximum modulation bandwidth
by a factor of 3. The bandwidth restrictions have been based on
the signal to error ratio (SER). The error being the difference
between an ideal demodulated signal and the signal demodulated
by the actual filter defined by eqn. 2. Once a minimum SER has
been defined then the maximum modulation bandwidth can be
calculated from formulas given in [3]. The usual bandpass sam-
pling requirements still apply [9], i.e. if B is the bandwidth then
B@2n+1)< fe (%)

In the schematic diagram of the quadratic filter demodulator
shown in Fig. 1 the sampling frequency is simply controlled by the
delay t. To demonstrate the principle of undersampling, the out-
puts of such a demodulator (after performing a square root opera-
tion) have been simulated for two sampling cases. The chosen
input has a Gaussian envelope and the bandwidth is about one
tenth of the carrier frequency. The envelope derived by full sam-
pling demodulation is shown in Fig. 2a. The corresponding plot
for three times undersampling is shown in figure Fig. 2b. Clearly
the signal to error ratio has deteriorated because the modulation
bandwidth was not reduced by the requisite factor of 3. Fig. 2¢
shows the difference between a and b magnified by a factor of 10
for clarity. An extreme modulation bandwidth has been used to
accentuate the errors. In practice, bandwidths of < 1% of the car-
rier frequency are typical. As the SER is proportional to the
square of {sampling frequency/modulation bandwidth} typical
errors can be expected to be at least 20dB lower than shown.
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Fig. 2 Demodulated envelopes from AM signal (DSBSC) with large
bandwidth Gaussian envelope

(i) Envelope produced by nonlinear filter with full sampling, namely 4
times carrier frequency '

(ii) Envelope produced by 3 times undersampling

(iif) 10 X difference between a and b

Conclusion: A remarkably efficient nonlinear filter has been shown
to work with an undersampled signal, further reducing the compu-
tational load. A direct trade-off between demodulation errors and
undersampling ratio applies for signals with a given bandwidth. In
situations where computational effiency is paramount such a filter
may be invaluable.
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Note on decoding binary Goppa codes
K. Huber

Indexing terms: Codes, Error corvection codes, Decoding

The author gives a simple expression for the polynomial y(x)
which solves the polynomial equation p(x)* = #(x) mod G(x),
where #(x), y(x) and G{(x) are polynomials over the field GF(2™).
The solution of such an equation is a step in the so called
Patterson algorithm for decoding binary Goppa codes. The result
may also be useful for other applications.

Introduction. For theoretical as well as practical purposes Goppa
codes [3 - 5] are among the most interesting and fascinating classes
of block codes. A further important application of Goppa codes
stems from the introduction of the public key cryptosystem of
McEliece [6]. Goppa codes can be decoded in an elegant algebraic
way by using the extended Euclidean or the Berlekamp-Massey
algorithm [8, 4, 5]. The Patterson algorithm for decoding binary
Goppa codes (18], algorithm 4) needs the solution of a polynomial
equation of the following kind as a second step:

y(z)? = t(z) mod G(z) (1)
ie. we are given the polynomials #(x) and G(x) over the field
GF(2") and want to determine the polynomial y(x). In fields of
characteristic two the operation of taking square roots is a linear
operation, hence the usual way of taking the square root of #(x)
mod G(x) is to perform this linear operation using a matrix (see
e.g. [8, 2] section 2.44). In the following we show that the solution
of eqn. 1 can be expressed in a very simple closed form, which is
very useful for direct implementation in software or hardware.

Taking square roots of polynomials modulo G(x).: First we set G(x)
= &3P + x - g,(x), hence

g1(2)? = - g2(2)? mod G(z)
Assuming that G(x) = G, + Gix + ... Gx* with G, # 0, we know
that the greatest common divisor (ged) of x and G(x) equals 1,
hence there is a polynomial w(x) such that w(x)* = x mod G(x).
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