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Background

• Chris Brophy 1990
– errors due to quantisation are not random
– 90° step algorithm’s are highly correlated

• Bing Zhao 1997
– Bessel function expansion (slow convergence)
– complicated!
– More terms than quantization levels (4x)



Significance
• Phase-shifting algorithms (+interferometers)  

now so good that errors down near 
quantization levels in some cases.

• Error correcting algorithms and self-
calibrating schemes can remove step errors

• Gravity wave optics and interferometry?
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Modulation and Phase Errors 
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Errors in Phase-Shifting 
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Quantization Errors 
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Bessel Series Approach 
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Convergence: 

problem with numerous discontinuities

20 term series 
expansion of 
phase error
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Exact Description

Can also specify approximately in terms of zero 
crossings (exact zero mean function).



Exact Calculation 

Sum of phase differences

Variance of 
phase error
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Correlation change with offset for 90° algorithms



Variation with offset a
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Alternative Representations 
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Quantisation errors in phase-shifting interferometry are often ignored because they are 
well below the level of other noise sources.  As the precision requirements increase, in 
areas such as quantum phase measurement and gravity wave interferometry, the 
quantisation errors may become more important. 
 
In 1990 Brophy [1] investigated the effects of intensity quantisation on the output of 
phase-shifting algorithms (PSAs). In that work only a few specific algorithms are 
discussed and it is assumed that explicit evaluation of the phase variance is 
impractical if the number of quantisation levels is large.  Subsequently a number of 
works by Zhao [2] concentrated on Fourier/Bessel series approaches in an effort to 
generalise the results.  Unfortunately the analytic results are either slowly convergent 
infinite series, or multiple finite series with obscure terms which ultimately give little 
insight into the final, highly structured results.   
 
We show that the variance can be calculated exactly in a small number of steps using 
a simple geometric interpretation.  The series we derive contains (at most) NP terms, 
for an N sample PSA with P quantisation levels.  This compares well to the series of 
Zhao with 4N^2P^2 terms.  
 
Perhaps the most important observation to make is that the phase quantisation error 
has a particularly simple form. This fact seems to have been forgotten in recent work.  
Figure 1 shows a comparison of the intensity quantisation error versus the resultant 
phase quantisation error.  Although the intensity error has a rather complicated 
sinusoid-like shape, the phase error is a straight sawtooth, albeit with variable 
spacing.  Indeed it is the numerous oddly spaced discontinuities that make the Fourier 
series representation so slowly convergent.  However, the constant slope sawtooth has 
many simple properties when it comes to evaluating means, means squares and other 
statistical parameters, without resorting to Fourier methods.  The sawtooth profiles 
can be calculated as a weighted sum of intensity errors using well-known error 
propagation formulae [3].  
 
To evaluate the statistical properties of the sawtooth it is generally necessary to locate 
the discontinuities resulting from each intensity component in the PSA.  If the 
intensity has been quantised to P quantisation levels (P is typically ~256 in video 
analog-to-digital converters) and there are N frames or steps in the algorithm, then 
there will be NP discontinuities.  For certain highly symmetrical algorithms, such as 
the N=4 PSA, some of these discontinuities are degenerate or coincident.  The 
calculation of total phase error variance (for example) proceeds by a simple 
calculation of the parameter between every successive pair of discontinuities.  The 
individual terms are then summed.   
 
At first sight this approach does not seem to add any insight into the origin of the 
highly patterned correlations known to occur for phase error variance (or standard 
deviation).  However, it is possible to obtain simple (ie non-series) expressions for the 
phase variance as a function of intensity offset if N is divisible by 4, for example. 
 
If we define two values for each tooth of the sawtooth, the sum value S(n) and the 
difference value D(n) then the statistics become simple expressions: 
 
Total of sum values   = SUM{S(n)}=0 



Total of diff. values   = SUM{D(n)}=2*pi 
Total of squares         = SUM{D(n)*[3*S(n)^2+D(n)^2]/12} 
 
The first two expressions are simple constraints upon the mean phase error and the 
mean phase error gradient.  The last expression corresponds to the total phase error 
variance.  The variance will be maximised where a few large values of D occur 
amongst many small (or zero) values of D, subject to the second constraint.  This is 
actually equivalent to a sawtooth with a few widely spaced teeth with many smaller or 
zero width (ie coincident) teeth.  Typically the 3*S(n)^2 term is small and positive.  
D(n) is always positive too, by definition.  If we ignore the S(n) term for now, then 
the variance expression is a simple sum of cubed tooth widths.  If we double the 
number of teeth then the average width halves and the variance drops by a factor of 4.  
This is exactly what happens in the classic case of shifting the intensity offset by 0.25 
of a quantisation level Q, for the N divisible by 4 algorithms.  For other algorithms the 
distribution of tooth widths is more complex and a simple halving does not occur.  
Figure 1 shows the intensity quantisation error with zero offset, followed by a plot 
with 0.25Q offset.  The corresponding phase errors are then shown in sequence, and it 
is clear how the offset reduces the correlation. 
 
A number of strategies for quantisation error reduction are suggested by our analysis.  
Three methods of immediate interest are:  
i) intensity offset dithering (typically add or subtract 0.25 of quantisation level Q); 
ii) intensity dithering (change overall intensity to give 0.25 Q over full range); 
iii) phase-shift dithering (change phase steps slightly). 
In all the above cases the average error induced by dithering may be compensated in a 
modified PSA, and the remaining error will be decorrelated to a certain extent because 
discontinuities will be misaligned.  The expected reduction in the standard deviation 
of the phase error is typically less than a factor of 2 for many PSAs and therefore the 
strategies may be of theoretical interest only. 
 
We believe that our sawtooth series approach can add some insight into error 
correlation analysis and we shall present a number of new statistical results for the 
phase errors in N frame PSAs. 
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Figure 1.  Intensity and phase quantisation errors
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Figure 2.  Phase error parameters  
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