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ABSTRACT

The connection between the Wigner function and the generalized OTF, and between the ambiguity
function and the generalized OTF is investigated for non-paraxial scalar wavefields. The treatment is
based on two-dimensional (2-D) wavefields for simplicity, but can be extended to the three-dimensional
case.
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1. INTRODUCTION

In the paraxial regime, the Wigner function1 and ambiguity function2 are two phase-space
representations that can be used to describe propagation of waves. For example Brenner, Lohmann and
Ojeda-Castañeda3 described how the ambiguity function can be used as a polar display of the defocused
OTF. However, it is well known that, although these phase-space reprentations are useful in the paraxial
regime, for highly-convergent fields their form changes upon propagation, an effect analogous to the
introduction of aberrations. Wolf et al.4 introduced a form of Wigner function for 2-D non-paraxial
wavefields, called the angle-impact marginal. This has the properties that it is real and covariant under
translation or rotation.

An alternative representation for wave propagation is based on the concepts of the generalized pupil
function,5 and the generalized OTF,612 which are two- or three-dimensional functions for two- or three-
dimensional wavefields, respectively. These generalized functions have been investigated in the paraxial
regime, and for highly-convergent scalar and vector wavefields. We have found that the concept of the
generalized OTF is useful in visualizing the derivation of the Wigner function.13

These different representations have also found use in the phase retrieval problem, where knowledge of
the intensity in the focal region can be used to reconstruct the phase variations. 14-18

2. DERIVATION OF THE ANGLE-IMPACT MARGINAL

We consider the two-dimensional problem of a scalar wave propagating in a plane. The amplitude in the
focal region can be written as the Fourier transform of the generalized pupil:

U(r) = _f $H(m)exp(ikm r)d2m, (1)

*colin@physicsusydeduau fax +61 2 9351 7727, Physical Optics Department, School of Physics, University of
Sydney, NSW 2006 Australia; kieran@research.canon.com.au, fax +61 2 9805 2929, Canon Information Systems
Research Australia, 1 Thomas Holt Drive, North Ryde, NSW 2113, Australia

Optical Processing and Computing: A Tribute to Adolf Lohmann, David P. Casasent, H. John Caulfield,
William J. Dallas, Harold H. Szu, Editors, Proceedings of SPIE Vol. 4392 (2001)
© 2001 SPIE · 0277-786X/01/$15.00

99



where k = 2ir /A. The generalized pupil is zero except on the surface of the Ewald circle, so that

11(m) = P(O)S(m - 1), (2)

where m is the modulus of the vector m. The intensity in the focal region is

1(r) = SS 5n(m1)n
*

(m2)exp[-ik(m2
-

m1). r]d2m1d2m2. (3)

Figure 1 shows the geometry in spatial frquency space.

P(92)

Fig. 1 The geometry of two intersecting generalized pupil functions.

Putting

m = m2 — m1

(4)
/ 2\1121 ( m

p=(m2+m1), p=l--.--
then the intensity is

1(r) = ) 55$ $ Hp-
)11

* + exp(-ikm r)d2md2p. (5)

The intensity can also be written as the Fourier transform of the generalized OTF
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1(r) =$ JG(m)exp(-ikm. r)d2m, (6)
2ir

so that

G(m)=--11H(p_)H*(p+)d2p, (7)2jr 2

or

2ir P(01)P * (02) / (8)C(m) =
-i-- sinai

where

m=2sin—. (9)
2

Thus

1(r) = $ $
P(0)P *

(02)exp(-ikm• r) d2m. (10)sinai

Putting

(11)m

and defining the spectral correlation function2 as

y(a,0) = P(01)P
*

(02), (12)

the intensity is then

1(r) = $ M(0,th. r) dO, (13)
—Jr

where the angle-impact Wigner function is

2
exp(—ikm)M(0,) = i1_$ y(a,0) dm (14)

N2ir2 V1m2/4
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= —fy(a,O)exp —2ikesin da, (15)

Inverting Eq. 14 we then obtain

y(a,O) = jicos $ M(O,) exp2iksin)d& (16)

which allows the pupil function to be recovered from the Wigner function. In the full three-dimensional
form of the derivation, some differences occur in the resulting equations.19

3. OTHER REPRESENTATIONS

The angle-impact Wigner function can be regarded as an intermediate step in the transformation between
real and reciprocal space. The integrals in a and 0 in Eqs.13, 15 can be alternatively performed in the
opposite order. In this case a different intermediate function is obtained that reduces to the ambiguity
function in the paraxial limit. In yet another approach, we start from the intensity rather than the spectral
correlation function. Again different intermediate functions are generated that have analogies to the
Wigner and ambiguity functions of the paraxial regime.
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