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Motivated purely by curiosity we consider conditions for positivity of the Teager-Kaiser
energy operator (TKEO) in one dimension.  The TKEO has numerous applications in
signal analysis, especially demodulation theory.  Positivity underpins the definition of
an ideal energy operator – a negative energy signal is essentially meaningless - but
the TKEO only approximates the ideal.  Formulating the problem logarithmically in
terms of  attenuation and phase,  rather  than the more conventional  amplitude and
phase  we  derive  a  family  of  normalised  curvature  constraints.   The  interplay  of
attenuation and phase then defines a deceptively simple 2-D parabolic domain outside
of which positivity generally fails.
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Introduction
In 1989 a simple operator, analogous to the total energy of a simple harmonic oscillator, was 
introduced to signal processing by Teager and Teager [1].  The main properties were soon 

explored and described by Kaiser [2].  By 1994 the main properties of the energy operator had 

been exposed and the conditions required for positivity determined [3].  A diverse range of 
applications for the Teager-Kaiser energy operator have been proposed, such as the analysis 
of optical interferograms [4], and the demodulation of wideband radio signals [5].  Recently we 
have become aware of an alternative way to view the energy operator [6], and accordingly, the 
positivity constraints.  It is now possible to illustrate the separate constraints upon amplitude 
modulation and phase modulation as a subtle interplay.

Attenuation and the Logarithmic Formulation
Our approach is to develop the initial analysis of Bovik and Maragos [3] and show that their 
log-concavity signal condition implies an interrelation between amplitude and phase.  We limit 
ourselves to continuous signals and the corresponding continuous energy operator.  We can 
represent (zero-mean) amplitude and phase modulated signal (sometimes known as AM-FM):

     ttbtf cos. . (1)

Log-concavity implies that an attenuation representation may be advantageous, and we drop 
the explicit temporal variation of  Eq (1):

  coslog efb  . (2)

We can avoid negative attenuation, or π radian phase flipping, by squaring the signal:

0cos222  ef . (3)

We now define the energy operator and its real logarithmic formulation:
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The positivity condition for an energy operator is simply E≥0.  Utilizing the simplification of the 
attenuation form (in Eq.2), as originally described in the author’s previous work [6]:

    22 coslog2log f . (5)

Hence:
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     0cossincos222  ef . (6)

The positivity of the first factor is guaranteed, and the second factor has four remaining 

variables    ,,, .  Interestingly the positivity depends neither on the either attenuation   

nor its derivative  .  For some applications we may wish to convert back to the amplitude 

formulation, but some essential simplicity is lost in the following relations:
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Positivity and an Idealized Energy Operator
Returning now to the positivity of Eq.(6) everywhere except at zero-crossings of the amplitude, 
we must have the condition: 

  0cossincos22   (8)

Consider an idealized energy operator that we define to have the following property:

     2 22cosideal b b b      . (6a)

The idealization guarantees  positivity because the output is the square of a real function.  The
Teager-Kaiser realization actually gives the result in Eq(6), which we can rewrite:
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. (6b)

Returning to Eq(8) we observe that unless the first term (the ubiquitous square of the local
frequency)  is  non-zero  the  positivity  condition  cannot  be  true  for  all  values  of  the  phase

  , independently of the two second derivatives    ,  (i.e. unless 0,0   ).  

We are interested in the more general non-zero frequency case.  The form of Eq(6b) suggests
that we can reduce the number of variables by defining normalized curvatures α, β, analogous
to normalized chirp rates:
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  (9)
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The result is a polar-like inequality in terms of the phase 

  


sincos.sincos
cos

1
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. (10)

Note the phase symmetry:

    

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 . (10A)

Eq(10) is the vector equation of a sequence or family of lines. Values of phase (   )

parameterize each line with a normal orientation  .  We can plot symmetric pairs of lines as

shown in Fig.1.

Fig 1.  Vector equation of a line from perpendicular vector and distance.

  Remember that the vector equation of a line can be written:

dr.n (11)

Here the position vector on the line is r, the perpendicular distance of the line from the origin is 
d , and the line perpendicular unit vector is n.  From Eq(10) and Eq(11) we explicitly write the 
vector relations:
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Although each line equation is rather simple, it is perhaps not immediately obvious what the 
overall sequence of lines actually means.  Using Mathematica to plot out the family of lines for 
different values of  phase φ we find that there is a tangent curve (or caustic) that uniquely 
defines regions of positivity and negativity of the energy operator.  The red curve in Fig. 2 is 
the limit curve, or envelope, for all values of phase.  It is reminiscent of a conic section.

Fig 2.  Region of positivity for attenuation and phase second derivatives.

It can be shown by a simple, but rather lengthy derivation (which we omit for brevity) that the 
positivity region is bounded by a parabola of the following form:
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. (13)

Interpretation of Amplitude and Phase Modulation Constraints
Before going further, we note that three parameters have no bearing on the parabolic positivity 
boundary curve, namely ρ, ρ', φ.  The first corresponds to a gain factor, the second to a time 
exponential factor, and the third reflects our original requirement for phase offset invariance.  
Below we consider a few specific regions of the limit curve where the energy operator is forced
to zero.  Note that Bovik and Maragos discussed positivity solutions containing simple 
exponentials (of order one) but omitted exponentials of order two.  Their more general solution 
has a “sufficiently smooth” signal amplitude defined by the signal's logarithmic concavity.
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Axes
The simple limits for pure amplitude or pure phase modulation occur along the x and y axes 
respectively of Fig.2:
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22,0
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(14)

Clearly there is an interplay or trade-off between modulation types.  As the relative attenuation

curvature   2   becomes  more  negative   ,  the  allowable  (relative)  phase

curvature range increases without limit   .  There is the question of how long any of

these extreme second derivatives can sustain.   We can measure this in terms of nominal

oscillation period   2

Condition A, Y-Axis: constant or exponential amplitude
Consider a local expansion, up to second derivatives:

      2 2
2 0 1 0 1 10, 2, 0, exp cos 2f t t t t                 (15)

     2 2
0 1 1 0 1 12cos 2 cos 1t t t t           (15a)

which shows the maximum chirp rate for a simple exponential envelope.

Condition B, decaying Gaussian amplitude
Local expansion:

      2 2 2
0 1 1

2
10 1, 2 1 , exp 2cos 1f t t t t t                   (16)

which shows the maximum chirp rate for a rapidly attenuated (Gaussian) envelope increases 
approximately as the square root of the amplitude attenuation Laplacian.  Note, however that 
the Gaussian width (sigma) is much less than the nominal oscillation period τ.

Condition C, constant frequency, exponentially growing amplitude
Local expansion:

     2 2
0 1 1 0 10, 1 exp cosf t t t t               (17)

which is a fixed frequency signal with a reciprocal Gaussian (quadratic exponent i.e 
exponential type of  order two) envelope which can inflate arbitrarily fast.
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Condition D, constant frequency, Gaussian amplitude
Consider

      2
0 1 2 0 10, exp cosf t t t t                (18)

which is a fixed frequency signal with an arbitrarily fast Gaussian envelope drop-off.

Overall Conditions
Overall, we can say (unsurprisingly) that positivity can be maintained in extreme chirp 
situations if the amplitude is a Gaussian.  When the frequency is constant, the exponential 
envelope has a wide range of possible second order forms.

Extension to 2-D Energy Tensor
What is analogous to positivity for the 2-D and higher dimensional [6]–[8] energy operators?  
Felsberg [9] suggests that the eigenvalues of the energy tensor must be positive.  In other 
words the 2-D energy operator matrix must be positive semi-definite.  Complete analysis must 
consider the interplay of five attenuation partial derivatives (up to second order) and five more 
partial derivatives of the phase.  The positivity solution may be bounded by a manifold in a ten 
dimensional space.  In a similar manner the positivity of the 1-D energy operator is bounded by
a manifold in a four dimensional space, except that one dimension cancels out and another is 
folded into a normalized space, leaving the simple parabolic boundary in a 2-D space 
presented above.  The proliferation of dimensions for 2-D energy operator positivity places it 
out of this paper's scope.

Discussion
Analysis of the Teager-Kaiser energy operator's properties is simplified by the logarithmic 
formulation; essentially the limits on phase modulation and amplitude modulation are 
intertwined by a parabolic relation of the normalized chirp-rate and the normalized attenuation 
curvature.  The TKEO can remain positive for surprisingly fast attenuation rates, but in real 
band-limited signals the amplitude in such regions may be negligible.

Notes
Why is Teager-Kaiser Special?
One way to way to explain the special property of the Teager-Kaiser energy operator is encapsulated by Eq(6).  It 
is that all first order errors in the estimate exactly cancel out leaving only (generally smaller) second order errors.

Quadrature functions
If the exact quadrature function is known, then demodulation/energy estimation is trivial using the amplitude and 
phase (and hence local frequency or phase derivative) directly from the argument of the analytic signal:

                   ˆ ˆ.cos .sin argf t i f t b t t ib t t f t i f t b t i t           . (1a)
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Function space
Twice differentiable C2 real functions.

Discrete formulation
Not considered here.

Harmonic Analysis
In an earlier publication [6] I claimed that positivity of the energy operator is equivalent to Hormander's [10] (p16-
21) definition of subharmonicity, based on the Laplacian of the logarithm.  Now it seems that I omitted a negative 
sign, which means positivity equates to superharmonicity instead – a very different implication. 
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