Alliteration and
latterday literary lunacy ?


Year 
Demonemonic 
Title
and
links 
Descriptors 
2001 
My PhD thesis Topics in Multi dimensional Signal Demodulation http://hdl.handle.net/2123/367 
Problems in the demodulation of one, two, and threedimensional signals are investigated... Full PDF directly 

2001 2007 
A Triplet inspired by Spiral Phase Optics Express freely available text 

Chronological and illogical  
1990 
Development of a
prototype instrument for noncontact shape measurement
of master tooling at the Royal Australian Mint PDF not available 
B. F. Oreb, K. G. Larkin, P. S.
Fairman, Y. Gilliand, et al., CSIRO Technical Memorandum, (DAPC0029), (1990). 

1990 1992 
Optical Surface Profiler (Precision 3D
Measurement) Brochure 1 Brochure (info sheet) 2 Brochure (specs) 3 
CSIRO Division of Applied
Physics in collaboration with The Royal Australian Mint 

1991 
Restoration of shadow details in projected fringe profilometer images PDF

K.
G. Larkin, P. S. Fairman, D. I. Farrant, and B. F. Oreb,
DICTA91 

1992 
Propagation of errors in different
phaseshifting algorithms: a special property of the
arctangent function 
K. G. Larkin, and B. F. Oreb SPIE International Symposium on Optical Applied Science and Engineering, San Diego, California, (1992), 219227. 

1992 
A new seven sample phaseshifting
algorithm 
K. G. Larkin, and B. F.
Oreb, SPIE International Symposium on Optical Applied Science and Engineering, San Diego, California, 1992 

1992 
Design and assessment of Symmetrical
PhaseShifting Algorithms 
K. G. Larkin, and B. F.
Oreb, Journal of the Optical Society of America, A 9, (10), 17401748, (1992) 

1992 
Moire based Optical Surface Profiler
for the Minting Industry 
B. F. Oreb, K. G. Larkin, P. S. Fairman, and M. Ghaffari, “SPIE International Symposium on Optical Applied Science and Engineering, San Diego, California, (1992), p4857  
1994 
The specimen illumination path and its
effect on image quality book chapter PDF 
C. J. Cogswell, and K. G.
Larkin, Handbook of Biological Confocal Microscopy, ed. Pawley, J. B. Second ed. (New York: Plenum, 1994) 

1994 
Highresolution, multiple optical mode
confocal microscope: I.System design, image acquisition an
3D visualization 
C. J. Cogswell, K. G. Larkin, J.
W. O'Byrne, and M. R. Arnison, ThreeDimensional Microscopy:Image Acquisition and Processing, IS&T/SPIE Symposium on Electronic Imaging Science and Technology, San Jose, California, (1994) 

1994 
The geometric phase: interferometric
observations with white light 
P. Hariharan, K. G. Larkin, and
M. Roy, Journal of Modern Optics 41, (4), 663667, (1994) 

1994 
Highresolution, multiple optical mode
confocal microscope: II. Theoretical aspects of confocal
transmission microscopy 
K. G. Larkin, C. J. Cogswell, J.
W. O'Byrne, and M. R. Arnison, ThreeDimensional
Microscopy:Image Acquisition and Processing, IS&T/SPIE
Electronic Imaging, San Jose, California, (1994) 

1994 
Optimal concentration of
electromagnetic radiation 
C. J. R. Sheppard, and K. G.
Larkin Journal of Modern Optics 41, (7), 14951505, (1994) 

1995 
3D Fourier analysis methods for
digital processing and 3D visualization of confocal
transmission images 
C. J. Cogswell, K. G. Larkin, M.
R. Arnison, and J. W. O'Byrne, ThreeDimensional Microscopy:Image Acquisition and Processing, IS&T/SPIE Symposium on Electronic Imaging, San Jose, California, (1995) 

1995 
Phaseshifting interferometry for
nonsinusoidal waveforms with phaseshift errors 
K. Hibino, B. F. Oreb, D. I.
Farrant, and K. G. Larkin JOSA,A 12, (4), 761768, (1995) 

1995 
Simple Formulae for Confocal Resolution
Parameters: the Full Width Half Maximum (FWHM), the
Ellipsoidal Observation Volume (OBSVOL) and the Root Mean
Square Spatial Frequency (RMSF) 
K. G. Larkin Focus on Microscopy '95, Taipei, Taiwan. Published in Zoological Studies 34, (Supplement 1), 8183, (1995) 

1995 
The Beginner's Guide to the Fractional
Fourier Transform, Part 1 
K. G. Larkin, The Australian Optical Society News, June 1995  
1995 
The Beginner's Guide to the Fractional
Fourier Transform, Part 2 
K. G. Larkin, The Australian Optical Society News, December 1995  
1995 
Effect of numerical aperture on
interference fringe spacing 
C. J. R. Sheppard, and K. G.
Larkin, Applied Optics 34, (22), 47314734, (1995) 

1996 
Fluorescence microtomography:
multiangle image acquisition and 3D digital reconstruction 
C. J. Cogswell, K. G. Larkin,
and H. U. Klemm, ThreeDimensional Microscopy:Image
Acquisition and Processing III, IS&T/SPIE Symposium on
Electronic Imaging San Jose, California, (1996), 109115 

1996 
Efficient nonlinear algorithm for
envelope detection in white light interferometry 
K. G. Larkin Journal of the Optical Society of America, A 13, (4), 832843, (1996) 

1996 
Efficient Demodulator for Bandpass
Sampled AM Signals 
K. G. Larkin, Electronics Letters 32, (2), 101102, (1996) 

1997 
Quantitative DIC Microscopy Using a
Geometric Phase Shifter 
C. J. Cogswell, N. I. Smith, K.
G. Larkin, and P. Hariharan, ThreeDimensional Microscopy: Image Acquisition and Processing IV, IST/SPIE Electronic Imaging, San Jose, California, (1997), 7281 

1997 
Phaseshifting algorithms for nonlinear
and spatially nonuniform phase shifts 
K. Hibino, B. F. Oreb, D. I.
Farrant, and K. G. Larkin, Journal of the Optical Society of America, A 14, (4), 918930, (1997) 

1997 
Fast Fourier method for the accurate
rotation of sampled images 
K. G. Larkin, M. A. Oldfield,
and H. U. Klemm, Optics Communications 139, 99106, (1997) 

1997 
Vectorial pupil functions and vectorial
transfer functions 
C. J. R. Sheppard, and K. G.
Larkin, Optik 107, (2), 7987, (1997) 

1998 
Phaseshifting algorithms for nonlinear
and spatially nonuniform phase shifts: reply to comment 
K. Hibino, K. G. Larkin, B. F.
Oreb, and D. I. Farrant, Journal of the Optical Society of America, A 15, 12341235, (1998) 

1998 
Similarity theorems for fractional
Fourier transforms and fractional Hankel transforms 
C. J. R. Sheppard, and K. G.
Larkin, Optics Communications 154, 173178, (1998) 

1999 
Direct method for the phase retrieval
from the intensity of cylindrical wavefronts 
K. G. Larkin, and C. J. R.
Sheppard, Journal of the Optical Society of America, A 16, (7), 18381844, (1999) 

1999 
Invariant Large Scale Structure of Axial Diffraction Patterns

K. G. Larkin, and C. Sheppard,
Australian Optical SocietyConference, The University of Sydney, 1999. Poster 

2000 
Using the Hilbert transform for 3D
visualization of differential interference contrast microscope images PDF on Maffew's page Direct link to PDF 
M. R. ARNISON, C. J.
COGSWELL, N. I. SMITH, P. W. FEKETE & K. G. LARKIN Journal of Microscopy, Vol. 199, Pt 1, July 2000, pp. 7984. Nice way to play with the Fourier symmetry of images and their gradients. 

2000 
Finite, Tractable Formulae for
Correlated Quantisation Errors in Phase Measuring
Interferometry 
K. G. Larkin, Applied Optics and Optoelectronic Conference, Loughborough, UK, (2000) 

2000 
Focal
Shift,
Optical
Transfer Function, and PhaseSpace Representations Citeseerx PDF Direct 
Colin J. R. Sheppard ,
Kieran G. Larkin Journal of the Optical Society of America, A 17, (4), 772779, (2000) Lots of interconnections investigated. 

2001 
Natural demodulation of twodimensional
fringe patterns: I. General background to the spiral phase
quadrature transform 
K. G. Larkin, D. Bone, and M. A.
Oldfield, Journal of the Optical Society of America, A 18, (8), 18621870, (2001). 

2001 
Natural demodulation of twodimensional
fringe patterns: II. Stationary phase analysis of the spiral
phase quadrature transform 
K. G. Larkin, Journal of the Optical Society of America, A 18, (8), 18711881, (2001).  
2001 
Topics in Multidimensional Signal
Demodulation 
K. G. Larkin, PhD. University of Sydney, 2001 http://hdl.handle.net/2123/367 

2001 
Natural demodulation of 2D fringe
patterns Nice example of unravelling overalapping Fourier lobes via spatial domain orientation unwrapping (to direction) 
K. G. Larkin, Fringe'01  The Fourth International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, (2001) 

2001 
A selfcalibrating phaseshifting
algorithm based on the natural demodulation of
twodimensional fringe patterns 
K. G. Larkin, Optics Express 9, (5), 236253, (2001) First example of an algorithm that works with arbitrary phase steps and less than 5 frames 

2001 
An isotropic Hilbert transform in two
dimensions: fearful symmetry? 
K. G. Larkin, and M. A.
Oldfield, Optics and Photonics News 12, (12), 20, (2001) 

2001 
Wigner function for nonparaxial
wavefields 
C. J. R. Sheppard, and K. G.
Larkin, Journal of the Optical Society of America, A 18, (10), 24862490, (2001). 

2001 
The threedimensional transfer function
and phase space mappings 
C. J. R. Sheppard, and K. G.
Larkin, Optik 112, (5), 189192, (2001) 

2001 
Wigner function for highly convergent
threedimensional wave fields 
C. J. R. Sheppard, and K. G.
Larkin, Optics Letters 26, (13), 968970, (2001) 

2002 
Direct embedding and
detection of RST invariant Watermarks

P. A. Fletcher, and K. G.
Larkin 

2001 
Wigner Function and Ambiguity Function
for Nonparaxial Wavefields 
C.J.R. Sheppard, and K.
G.Larkin, 

2002 
Wigner Function and Ambiguity Function
for Nonparaxial Wavefields 
C. J. R. Sheppard, and K. G.
Larkin, Chapter 3,Optical Information Processing: A Tribute to Adolf Lohmann, ed. Caulfield, H. J. (Bellingham: SPIE, 2002) PM117: 3755 

2003 
Information capacity and resolution in
threedimensional imaging 
C. J. R. Sheppard, and K. G.
Larkin Optik 113, (12), 548550, (2003) 

2004 
Linear phase imaging using differential
interference contrast microscopy 
M. R. ARNISON*, K. G.
LARKIN†, C . J. R. SHEPPARD*,N. I. SMITH‡ & C . J.
COGSWELL Journal of Microscopy, Vol. 214, Pt 1 April 2004, pp. 7–12 The inverse of a gradient can be seen as a Fourier spiral operator. 

2005 
Uniform estimation of orientation using
local and nonlocal 2D energy operators 
K. G. Larkin Optics Express 13, (20), 8097  8121, (2005) 

2006 
Extreme compression of fingerprint
images: squeezing patterns until the spirals pop out 
K. G. Larkin, and P. A.
Fletcher Fifth International Workshop on Information Optics, Toledo, Spain, (2006) 

2006 
Joint Distribution Functions and the
Generalized Optical transfer Function 
C. J. R. Sheppard, and K. G.
Larkin, Fifth International Workshop on Information Optics, Toledo, Spain, (2006) 

2007 
A coherent framework for fingerprint
analysis: are fingerprints Holograms? 
K. G. Larkin, and P. A. Fletcher Optics Express 15, (14), 86678677, (2007) 

2008 
Invited talk Which function spaces do fingerprints inhabit? And why should we care? 
K. G. Larkin Function Spaces and Applications, UNSW Research Workshop, (University of NSW: 2008) Abstracts Organisation 

2009 
Affineinvariant
image watermarking using the hyperbolic chirp 
P.
A. Fletcher, K. G. Larkin, and S. Hardy, DICTA 2009, (Melbourne: 2009) 

2010

Invited
talk 
K. G. Larkin 

2011 
Measurement of the lens optical transfer function
using a tartan pattern
Free PDF available from: http://www.opticsinfobase.org/abstract.cfm?URI=ao50152158 
Matthew R. Arnison, David P.
MorganMar, Chris A. Deller, Peter A. Fletcher, and Kieran G. Larkin, "Measurement of the lens optical transfer function using a tartan pattern," Appl. Opt. 50, 21582169 (2011) 

2011 
Invited talk
Applications and Extensions of the Riesz transform in image processing 
AMSI International Conference on Harmonic Analysis and Applications, Macquarie University, Sydney, 7 – 11 February 2011 

2001  2014 RIP 
27 MB animation 
Tenacious tagging of images via Mellin monomials Five Arxiv versions to choose from, but the last is definitive. Which is it: image processing, optics, or information security? 
K. G. Larkin, P. A. Fletcher, and S.J. Hardy 
March 2014 
Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform 
K. G. Larkin and
P. A. Fletcher Biomedical Optics Express How to do it yourself (inverse Riesz visualization) 

July 2014 
Image visualisation using Riesz transforms Slides (2.7MB PDF) 
Australian
Mathematical Sciences Institute Workshop
in Harmonic Analysis and its Applications, 2014 

October 2014 
On
the Dainty Conjecture: Nature's forbidden zeros Abstract: In a 1969
paper Christopher Dainty conjectured that the
three dimensional diffraction pattern from a perfect lens with
circular aperture has no zeros, except the trivial
point zeros on axis and the Airy disk null rings in
the image plane. Using Radon projection methods we
show that the conjecture can be framed as a
continuous sequence of one dimensional
problems. The Helmholtz wave equation for
such scalar fields has a 3D Fourier transform
that exists only on the cap of an sphere. The
projection slice theorem then implies a
simple 1D Fourier relation. We show that within
the geometric light cone any zeros are forbidden by a
strong symmetry inequality. Outside the light cone
– that is to say in the shadow region– the conjecture
remains unresolved.

Seminar at Macquarie University, (Rigorous proof finalised. MS still in preparation...) 

October 2014 
On the positivity of an energy operator and the interplay of amplitude and phase modulation. 
Seminar
at Mathematical Sciences Institute, ANU, Canberra. Here it is, the PDF 

November 2014 
Book Chapter The Spiral Phase Transform Phase Estimation in Optical Interferometry 
Google books already has it... 

January 2015 
Unorthodox Contentious Fervent Unfashionable Presumptuous 
Structural Similarity Index SSIMplified: Is there really a simpler concept at the heart of image quality measurement? 
Arxived, Moderated, Tolerated 
Published on 20 July 2016  Phase contrast image guidance for synchrotron microbeam radiotherapy 2016 Institute of Physics and Engineering in Medicine  Daniele Pelliccia, Jeffrey C Crosbie and Kieran G Larkin,  
Accepted CVEE, August 2016  ...In particular, we describe the relationship between the growth conditions of monogenic extensions of squareintegrable function f in terms of pointwise bounds or bounds on integral averages on the one hand, and the support of the Fourier transform ^ f or its annihilation by certain higherdimensional analogues of the signum function on the other.  Hardy, PaleyWiener and Bernstein Spaces in Clifford Analysis PaleyWiener underpins phaseretrieval in 1D. In higher dimensions PW can be defined to have various symmetries...  D.J. Franklin, J.A. Hogan, and K.G. Larkin Complex Variables and Elliptic Equations 
First Draft completed August 2016.Preprint Sept 2016  Reflections on Shannon Information: the search for a natural twodimensional informationentropy  
Published January 2017  Mapping optical path length and image enhancement using quantitative orientationindependent differential interference contrast microscopy  Michael Shribak, Kieran G. Larkin, David Biggs Journal of Biomedical Optics  
Scheduled 2017  On the Dainty Conjecture: Nature's forbidden zeros  ...where black is the color and none is the number...  
Later in 2017  Warping of Bandlimited Images: The Search for Perfection [ = lossless + reversible]  Kieran G. Larkin 