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ABSTRACT

Much analysis of microscope image formation is based upon the so-called weak scaucring approximation in
which an image is linearly related to an object by a convenient convolution property which greatly simplifies
reconstruction. This approximation is often invalid in tmnsmission microscopy.

A better model of transmission must account for multiple scauered components in the light distribution. In
the simplest embodiment of such a model the object is represented by a 3-D optical density distribution. Light
transmitted through such an object is related to the total density along a ray path. Consequently the imaging process
can be linearized by a logarithmic transform of the transmitted light distribution. Once linearized, conventional
deconvolution techniques can be applied to a surface integral of the transformed intensity. Surprisingly this logarithmic
model of imaging predicts a power series expansion representing the 3-D attenuation distribution. The first term is
related to the confocal image, the second term corresponds to the conventional image.

Implications of this multiplicative approach to image reconstruction are explored. The model also predicts
critical parameters of the so-called "wandering" spot and may be useful in determining the optimum tracking criteria in
a transmission confocal microscope incorporating adaptive optical technologies.

iNTRODUCTION

This paper consists of four main sections. Following the introduction, Section 1 presents salient features of the
two main approximations used to model propagation of light through inhomogeneous media. Section 2 develops a
multiplicative model of transmission through a specimen using a geometric ray formulation. Section 3 extends the
results obtained from the preceding section to demonstrate the relation between multiplicative imaging and both
confocal and conventional imaging. Section 4 discusses some implications of image reconstruction using the
multiplicative model.

The aim of this paper is to explore the implications of a multiplicative model of optical imaging. Most
previous work on confocal transmission imaging has been based upon an additive imaging process. The question of the
validity of either theory is not considered in detail here but interested readers should consult recent work comparing the
two1' 2

1. ESSENTIAL BACKGROUND

Although several authors have performed confocal transmission microscopy of various semi-transparent
samples the relationship between the resulting transmission image and the original object is not clear. In the case of
double-pass transmission confocal microsc7' , thesystem symmetry ensures that (for small phase inhomogeneities
at least) the irradiance distribution falling upon the confocal pinhole detector remains correctly centred ,as indeed it
does in the reflection and epi-fluorescence modes of a confocal microscope. However, the single-pass confocal
configuration produces an irradiance distribution upon the detector plane which can "wander" significantly from the
nominal centre ofthe system . Aspects of this wandering have been described by O'Byrne and Cogswell lO 11

It should be noted that the de-scanning optics described by 6 only compensates the beam tilt due to the
image scanning system and not tilts due to specimen refractive index variations. Rigorous analysis of transmission
microscopy is fraught with difficulties. Much of the analysis performed so far has assumed some simplifying
approximations. Frequently the weak scattering theory is used where the solution is given by the first Born
approximation 1244• The essence of this approximation is that the scattered field from any one plane of the specimen
is unaffected by scattering in any other plane. In other words the field is considered to be scattered once, at most.
Clearly this conclusion is untenable for many typical specimen types: the light transmitted through a particular region is
certain to have affected its transmission through other regions.

An alternative approach - which is known as the Rytov approximation [see, for example, Ishimaru1' 15] -
includes some affects of multiple scattering. The Born and Rytov models produce fundamentally different results
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which are best iflustrated by a simple example: Consider the light transmitted through two neutral density filters of
transmittances, T1 and T2. The first Born approximation predicts the overall transmittance, TB to be as follows

TB =T1+T2-1

Whereas the Rytov approximation predicts an overall transmiuance TR, where

TR = T1T2

(1)

(2)

If T1 = T2 = 0.5, then TR = 0.25 and TB , Thus we can conclude - for this grossly simplified case - that
the Born approximation gives poor results for specimens with transmissions of the order 0.5 and lower.

2. MULTIPLICATWE MODEL OF TRANSMISSION ThROUGH SPECIMEN

The following analysis wifi only consider a purely absorbing specimen which has a constant refractive index
throughout. Thus phase effects (refraction) may be ignored. However, rather than develop the Rytov approach for
transmission microscopy, which can be expected to be a lengthy process, we shall instead consider a simplified model
which, nevertheless, illustrates important aspects of the Rytov (or, rather, the multiplicative method). An extension to
weakly varying refractive index is possible but beyond the scope of this paper 1648• For convenience geometrical
propagation of light rays is assumed. However, it can be shown that a simple modification using quadratic phase
factors can extend the theory so that diffraction effects are included. Again such an extension will not be considered
here as it does not alter the main conclusions drawn from the model.

—

Consider the optical configuration in Figure 1. A specimen is placed between two matched objectives which are
spaced such that they have coincident focal planes within the specimen. The optical system is axially symmetric with
the exception of the specimen which may have an arbitrary distribution of transmittance. To satisfy, strictly, conditions
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required for geometric ray tracing, the transmittance distribution must have spatial variations which occur over
distances much larger than the wavelength of light used to probe the specimen. Such a condition will be assumed
initially. A uniform collimated quasimonochromatic beam enters the back focal plane of the illuminating object ( Li).

The light is focused down into the specimen and the emerging light is collected by objective ( L) and collimated so

that a plane wavefront with a specimen-modulated amplitude emerges at the second back focal plane P2 . For
simplicity the specimen refractive index is assumed to be matched to the index of the medium in the focal region of the
two objectives.

A light ray entering the specimen with amplitude U1 is progressively absorbed as it transverses in a straight line
path. The well-known concept of optical density can be utilised to generate a simple expression for the amplitude of the
ray emerging from the specimen. A closely related idea is used in computer tomography 1923 For convenience our
defmition of optical density will use natural logarithms as opposed to logarithms base 10 used conventionally. If the
(amplitude) transmittance is 'V then

'V =e' (3)

A uniform absorbing medium has an optical density directly proportional to its thickness (which relates to the path
taken by transmitted light). A non uniform purely absorbing medium will have an overall density related to the path
integral of its local density function

,r= exp ($pd) (4)

where p =p(x,y,z) is the local density function ofthe specimen. The units of p are reciprocal length, that is to say
optical density per metre. The convenience afforded by this optical density approach is apparent in the above equation
where the total transmittance is equated to an additive quantity (in this limit the summation becomes an integral).

As an intermediate step in the modelling it is necessary to evaluate the beam amplitude U1 in the back focal

plane P1 . Consider the details of ray transmission through the specimen in Figure 2. The field strength associated with

the incoming ray is U0 and is assumed to be constant over the lens aperture. the path length along the ray is inversely

proportional to COS 9, where 0 is the my-axis angle. The path integral in Eq.4 can be rewritten

U1 = U0
exp{—

1
$J$p(xyz)5(x —z/f)c5(x —

riz/f)b(z)dxdYdz}
(5)

cos 0

The Dime delta function selects only those points on the path, whilst the rectangular function b(z) limits the range of
the integration with respect to z . The parameter Z is just the objective focal length (that is to say the path length is
limited to the region between the two lenses).

b(z) =
1,forlzl < Z

(6)
O,otherwise

Now an expression for the normalized outgoing field can be derived

(u(,) 1 '
ml

' I = — I p(z/f, iiz/f,z)b(z)dz (7)' U0 ) cos0

Equation 7 is valid at all points in the BFP P1 (because of the geometrical approach here the amplitude is unaltered

between the lens principal plane and P1).
The next step is to evaluate the integral of the logarithmic amplitude over the rear stop of the objective (in the

plane P1). The reason for this type of integral will become apparent later. At this point we must assume that there are
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no opaque regions in the specimen, otherwise the amplitude can drop to zero and hence the logarithm approaches
(minus) infinity. Physically this corresponds to the fact that opaque regions shadow other regions and prevent that
regional information from emerging from the specimen. This transmission model breaks down for specimens with
opaque regions and suggests that, in general, imaging of such specimens involves the unavoidable loss of shadow
region information.

The integral I is defined as follows

I =jJ1nt:U1c: }Jd11
(8)

where S iefines the surface area of the objective rear stop. A corresponding aperture function a(, i) can be defmed

for this surface ( 2 if r2)

a(, fl)= Tlforfr
< r

(9)
IO,othervise

Consequently

I =—j
a(, 11)

{$Pz/f 17z/fz)b(z)dz}ddT1 (10)cos 6

Changing the order of integration and noting that x cJ/z and y = rjf/z

I=
_fffP(xYz)[:; L.]dxdydz (11)

After some manipulation I can be rewriuen

I = (12)

If the specimen is Shifted from the origin to a point (x0 ,Yo 'Zo) the integral clearly becomes a convolution

I(x0,y0,;) =_$ffpx
— xo,y —y0,z — ;)p(x,y,z).dxdydz (13)

Thus p(x,y,z) represents the geometric point spread function (PSF) for multiplicative imaging. The function p
defines a double conical region (identical to the illumination and collection cones) with a weighting function which
accounts for the 1 I cos 0 path length through the specimen as well as the 1 1 z blur circle amplitude.

In this section we have shown that a measurement of the surface integral of logarithmic field isolates the blurred
3-D distribution of the optical density function p . However to recover the distribution a deconvolution must be
performed. The convolution kernel in this instance is p , a double conical function. Fourier analysis of p shows the
well known "missing cone" of spatial frequencies 8, 14, 24, 25 It is thus inevitable that measurements of the integral I
contain no information about certain spatial frequencies present in p. This is not a particularly surprising result and
fits in well with previous work which uses the Born approximation. The real importance of the model developed in this
chapter is that the 3-D optical density distribution can, in principle, be recovered exactly (apart from the missing
cone).

A recent paper by Wu & Schwarzman26 developed a similar multiplicative theory but applied the process to
measurements taken in the image plane of a conventional microscope, whereas the system we propose uses coherent
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illumination with a confocal arrangement of illuminating and collecting objectives.

3. CORRESPONDENCE BETWEEN MULTIPLICATIVE IMAGING AND BOTH THE CONFOCAL
AND CONVENTIONAL IMAGES

In the previous section we derived an expression for the field amplitude in the back focal plane of the collecting
objective (see plane P2 in Figure 1). The relationship can be written

U1 = U0 exp— {p*p} (14)

where * indicates convolution. Although the analysis so far has utilized the geometrical optics approach, the above
equation can be modified to satisfy the wave theory approach merely be replacing p with PD which contains a
quadratic (defocus) phase factor.

The field at P2 is Fourier transformed by lens 3 to give the field at the detector plane P3 . Two important
Fourier transform properties will be shown to have important repercussions for both conventional and confocal
imaging. Definitions of both modes of imaging will be given at the relevant points of the analysis.

If the field amplitude in plane P is h(c, 17) then the field in plane P3 is H(u, v) where:

H(u,v) =Affh(.i)exp(—2iri[uc + v])dcdi (15)

The above expression is merely the Fraunhofer diffraction integral. The coefficient A is related to radiation wavelength
1a , and lens focal length f . The co-ordinates U and v are scaled relative to . andf2 . Details of the above
transfonn relation are given by oodm27 for example. The field at the origin ofplane P3 isjustH(O,O) with

H(O,O) = A$fh(. )dcdi (16)

In other words, the quantity H(O, 0) is directly related to the surface integral of the field h at the plane 2 (the BFP of

objective lens L2). If a small pinhole is placed at 03 the signal, C, detected by a detector behind the pinhole will be

directly proportional to 111(0,0)12. The radius of the pinhole must be substantially smaller than the radius of the first

zero ring of the diffraction pattern formed when the system contains a clear (reference) specimen. In this case C
corresponds to the transmission brightfield confocal signal.

A signal which can be easily measured is the total power, T, reaching the detector plane.

T =
$$IHuv)12dudv (17)

By Rayleigh's theorem (see, for example, Bracewell 28) this can be shown to be

T =
$JIh(. i)I2ddn (18)

It can also be shown that T corresponds to the conventional (non-confocal) transmission brighfield image. To
summarize this section so far: the total integrated field at the BFP 2 is proportional to the square root of the confocal
image, whilst the total integrated irradiance of BFP P2 is proportional the conventional image.

Now consider the quantity I defmed in the previous section, equation (8). If the absorption in the specimen is
not too great, then the logarithm in the integrand may be expended as a power series. Let U1/U0 = 1— g(, ii), then

60 / SPIE Vol. 2184 Three-Dimensional Microscopy (1994)



I = _S$ii _ g)th5d17 = —fj'g +-+
-}J5dii

(19)

The first two terms of the series give the second order approximation which has less than 10% error for values of
absorption g less than 0.6. Defining '2 the second order approximation leads to

'2
J5(g

+ -)dcdi1 = ff(3 _ 4Q + (20)

The rightmost integral above consists of three parts: the first is just a constant, the second is the normalised (square
root) confocal image, the third is the normalised conventional image. Explicitly

I _!13_4+L (21)2 2 C0 T0)
where C0 is the confocal image signal for a clear specimen, and T0 is the conventional image signal for a clear

specimen.
In this section we have demonstrated an important point that the information necessary to reconstruct the 3-D

density distribution can be approximated by a composite data set constructed from the confocal and the conventional
images. Composite images have been used previously to sharpen axial response in refection ima29 ,butnot for the
improvement of image fidelity in transmission microscopy.

4. IMPLICATIONS OF THE MULTIPLICATiVE MODEL

The multiplicative model developed so far allows the 3-D optical density distribution to be estimated by the
following process:

i) sample the conventional image over a 3-D array of points
ii) simultaneously sample the confocal image over same array
iii) combine the arrays to generate a composite image [Eq.(21)]
iv) deconvolve using a known PSF p [where '2 PP]
v) optionally transform back to transmittance using Eq.(3)

The end result is expected to have greater image fidelity than either the deconvolved conventional or deconvolved
confocal arrays. In part I of this paper the multiple optical mode microscope was used to collect 3-D datasets of
chromosomes (from an orchid root tip) in transmission and transmission Nomarski. The process outlined above in steps
i) to v) has not yet been applied in full. Preliminary results up to step iii) indicate that the composite image is visually
rather similar to both of its basis images. Spatial frequency analysis shows a broadly similar image power spectrum.
However, other indictors such as intensity histograms look quite different. The crucial test of the models validity is
whether or not it reduces artifacts in the deconvolved image.

In both sections 2 and 3 the phase changes in the wavefront have been assumed to be uniform across the aperture
(the optical path of all rays is considered constant). A direct consequence of this is that the irradiance distribution upon
the detector plane has 180 degree rotational symmetry, hence the irradiance centroid is always located on axis.
Conveniently this allows us to sample the confocal image with a fixed pinhole. If, however, the phase is non-uniform,
then the centroid may occur off-axis. The exact location of the centroid is then dependent upon the overall phase
symmetry. Initial analysis of the phase effects indicate that the irradiance level in the region of the centroid carries the
information necessary for image reconstruction. Consequently a transmission confocal microscope for phase and
amplitude (absorption) imaging system may need to track the wandering spot centroid.
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CONCLUSION

A multiplicative theory of optical imaging has been developed and the major implications of such a theory for
image acquisition and reconstruction have been explored. The concept of a composite image with improved image
fidelity has been introduced. Experimental confirmation of the modeVs applicability is now required.

ACKNOWLEDGEMENTS

The authors would like to thank Cohn Sheppard for many enlightening discussions about the scattering of light
in specimens. We would also like to thank Richard Piorkowski for invaluable assistance building the microscope and
Kerwyn Foo for preliminary analysis and assesment of the composite images.

The Physical Optics Department is supported by funds from the University of Sydney, the Science Foundation
for Physics within the University of Sydney, and the Australian Research Council.

REFERENCES

1. Kaveh, M., and Soumekh, M., "Computer-Assisted Diffraction Tomography," 369-413, Image Recovery:
Theory and Application, ed. Henry Stark., Academic Press, Orlando, 1987.

2. Lin, E. C., and Fiddy, M. A., "The Born-Rytov controversy: I. Comparing analytical and approximate
expressions for the one-dimensional deterministic case," Journal of the Optical Society of America, 9,(7),
1102-1110, (1992).

3. Brakenhoff, G. J., "Imaging modes in confocal scanning light microscope (CLSM)," Journal of Microscopy,
117, 223-242, (1979).

4. Cogswell, C. J., and Sheppard, C. J. R., "Imaging using confocal brightfield techniques," EMAG-MICRO 89,
Vol. (London: lOP, 1989).

5. Sheppard, C. J. R., and Cogswell, C. J., "Reflection and transmission confocal microscopy," jj
International Conference on Optics Within Life Sciences, Vol.1, 310-315 (Garmisch-Partenkirchen: Elsevier,
1990).

6. Dixon, A. E., Damaskinos, S., and Atkinson, M. R., "Transmission and double-reflection scanning stage
confocal microscope," Scanning, 13, 299-306, (1990).

7. Sheppard, C. J. R., and Wilson, T., "Multiple travesing of the object in the scanning microscope," Optica
Acta, 27,(5), 611-624, (1980).

8. Sheppard, C. J. R., and Cogswell, C. J., "Three-dimensional Imaging in Confocal Microscopy," 143-169,
Confocal Microscopy, ed. T. Wilson. Academic Press, 1990,

9. Cogswell, C. J., and Sheppard, C. J. R., "Confocal Brightfield Imaging Techniques Using an On-Axis
Scanning Optical Microscope," 213-242, Confocal Microscopy. ed. T. Wilson. Academic Press, 1990,

10. Cogswell, C. J., and O'Byrne, J. W., "A high resolution confocal transmission microscope: I. System design,"
SPIE conference on Biomedical Image Processing and Three-Dimensional Microscopy, Vol.1660, 503-511
(San Jose: SPIE, 1992).

1 1. O'Byrne, J. W., and Cogswell, C. J., "A high resolution confocal transmission microscope: II. Determining
image position and correcting aberrations," SPIE conference on Biomedical Image Processing and Three-
Dimensional Microscopy, Vol.1660, 512-520 (San Jose: SPIE, 1992).

12. Born, M., and Wolf, E., Principles of Optics, Pergammon Press, Oxford, 1965.
13. Wolf, E., "Three-dimensional structure determination of semi-transparent objects from holographic data,"

Optics Communications, 1,(4), 153-156, (1969).
14. Streibl, N., "Three-dimensional imaging by a microscope," Journal of the Optical Society of America, A,

2,(2), 121-127, (1985).
15. Ishimani, A., Wave Propagation and Scauering in Random Media. Academic Press, New York, 1978.
16. Sasaki, 0., and Kobayashi, T., "Beam-deflection optical tomography of the refractive-index distribution based

on the Rytov approximation," Applied Optics, 32,(5), 746-751, (1993).
17. Lira, I. H., and Vest, C. M., "Refraction correction in holographic interferometry and tomography of

transparent objects," Applied Optics, 26,(18), 39 19-3929, (1987).
18. Noda, T., Kawata, S., and Minami, S., "Three-dimensional phase-contrast imaging by a computed-

tomography microscope," Applied Optics, 31,(5), 670-674, (1992).

62 /SPIE Vol. 2184 Three-Dimensional Microscopy (1994)



19 I (t'661) AdoDsoJJ!j !euo!suw!a-aJqi fr9lZ •I°A 3!dS 

(o661) '6LZ-L9 '(z)'Lc '°PO 
IuPONJO pu.Inof iop m!M i(dooso.iz!w ojuo,, "f 3 'jpi&so3 pui 'j f 'pmddoqg 

8L61 "IIOA MN 'II!H EJD3} 'suoflllddB su ptm uuojsuari iuno oqj 'N a 
8961 '03sPuc.Id tIES 'IflH-MwON 'sdo 01 UOfl3flpOflU 'M I 'UP00D 

'(1661 'aidS) c8Z8LZ 'OI'iIA 'II U!SS3Od U1I It!PWO! 
'pçqo !dosoiz!mJo uoansuoai-j qi oi tpoidd muquo, 'd 'uumuitp P" 'x ' (6861) '-6t '(cz jddn)'g, "I!fl 

IPD JO 3U1flOf UBdOJfl '2U!BUuI Q- JO X.IOOq UOP3.IJJp Jo SUOV3JP!SUO3 ').J f 3 'pmddqS 
(z661) '06E-LLE '(Ys9i 'Adosoxq jo pu.ino 

'Adozsoio!w U!UU13S jE3OJUO3 U SUOPUflJ JJSUW Q- JO 3UZIJU2!S otu,, ' 'n P' 'i i •(Z661) 'I'Z9-Lt'Z9 '(67i'I 's!1dO P!IddV 'siqo p!q 
Jo UO3fl.flSUO1 TBUO!SUUIf-O.Itfl 1OJ suofoid p3rido moj (qdaiomo pndwo,, ' '.s 'uoi (661) '-ott' '(zYzc 'u!.IU!ua indo pp ouImo1Jiu! uoisuwppjnm 

Jo UO13ftflSUO3.I LP iOJ smtpiop 3qchJOUIO pondmoo A !jdjnN,, 'j 'uAoq1 
(z661) 'E9U-9SEI '(8)'6 'V 'E3!IU1V JO MPOS OUdØ tP JO j1flUflOf '1!SUUI 

paiws jido WOJJ UO!PftflSUO3.I Dqd13.IOmO, 'V '2JqZ1Eq3 pu "f y 'A(UAQ 'H 'pPP'J 
(L861) 'c6u-c8u '(8)' 'V 'UmV JO 

prnd tp jo pu.mof 'szdo nuioo u siAu! pui uuojsu.n (qdw2omoj,, 'i-I v 'usopuv 
'9861 'PJOJXO uOPufl3 'UOIPnJ1SUO3>J pue UOUE1OSOJ EUJI 'f 'N 'IPUUO(PN Pu "L 'H ' 'S1E '61 


