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Summary

Differential interference contrast (DIC) is frequently used in

conventional 2D biological microscopy. Our recent investi-

gations into producing a 3D DIC microscope (in both

conventional and confocal modes) have uncovered a

fundamental difficulty: namely that the phase gradient

images of DIC microscopy cannot be visualized using

standard digital image processing and reconstruction

techniques, as commonly used elsewhere in microscopy.

We discuss two approaches to the problem of preparing

gradient images for 3D visualization: integration and the

Hilbert transform. After applying the Hilbert transform, the

dataset can then be visualized in 3D using standard

techniques. We find that the Hilbert transform provides a

rapid qualitative pre-processing technique for 3D visualiza-

tion for a wide range of biological specimens in DIC

microscopy, including chromosomes, which we use in this

study.

Introduction

Biomedical researchers are increasing their use of 3D

visualization in examining the behaviour of small structures

such as the cytoskeleton and chromosomes during mitosis.

Much of this work is carried out using fluorescence,

especially confocal fluorescence, which is ideally suited to

3D analysis (Terasaki & Dailey, 1995; Hepler & Gunning,

1998). However, there is a continuing need to observe

unstained transparent features within biological specimens,

accounting for the continuing popularity of differential

interference contrast (DIC) in conventional microscopes

(Cole et al., 1995). The use of DIC is currently limited to 2D,

as attention has only recently been paid to 3D visualization

for transmission DIC. This contrasts with the advanced

development of 3D visualization techniques for fluorescence.

We are investigating 3D DIC microscopy, in both conven-

tional and confocal modes. We have found that standard 3D

image processing and visualization techniques, such as

those used for confocal fluorescence, are inappropriate for

DIC.

DIC produces an image combining the phase gradient

and amplitude of the specimen. For weakly absorbing

objects, the image will be mostly phase information. This

provides structural information about otherwise transpar-

ent details of the specimen, where there are changes in

refractive index in features such as cell components. The

response to the phase-gradient is non-linear, so without

correction to a linear response, any resulting 3D visualiza-

tion will be qualitative only, just as for the original 2D DIC

images. In this paper we concentrate on such qualitative

imaging.

A simulated 1D cross-section of a phase object and its DIC

phase gradient is shown in Fig. 1. This produces a 2D image

which has a bas relief appearance, as shown in Fig. 2(a).

Specimen features (in this case, a few metaphase chromo-

somes from an orchid root tip preparation) appear with

highlights and shadows at the edges, against a grey

background. This provides a boost in high spatial frequency

response (Cogswell & Sheppard, 1992), together with

increased contrast for human viewing of 2D images.

Meanwhile, axial resolution is increased, with optical

sectioning occurring for high spatial frequency features in

the specimen. However, unlike confocal fluorescence, this

optical sectioning does not apply to low spatial frequencies

in DIC.

A common approach to computer display of 3D micro-

scopy datasets of biological specimens is 3D volume

visualization (Kriete, 1992; Chen et al., 1995). For
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fluorescence imaging, this relies on making the background

transparent. This is easily done if the background is

approximately black, indicating low fluorescence signal

(see Fig. 1a). In the DIC case, the background is grey with

small deviations in intensity. Making grey transparent in a

3D volume will reveal only the lateral shells of specimen

features (Fig. 1b). Image processing techniques appropriate

to gradient images need to be found and applied to DIC

datasets before they can be displayed meaningfully in

3D.

Several authors have recently outlined methods that

could be used to prepare DIC images for 3D visualization.

Line integration and deconvolution (Kam, 1998) is an

iterative method requiring calibration to the particular

microscope in use. Variance filtering and directional

integration using iterative energy minimization have also

been proposed (Feineigle et al., 1996). The rotational

diversity technique (Preza et al., 1998) combines numerous

images taken of the specimen at different rotations. Direct

deconvolution may be used, calibrated and optimized to

reduce noise with a Weiner filter (van Munster et al., 1997).

In this study we explore the suitability of the Hilbert

transform for DIC image visualization. As a starting point

we take the simple case of directional integration in 2D, as a

method of retrieving the phase, given the phase gradient

supplied by DIC. We then propose the 2D Hilbert transform

as a qualitative alternative.

Image processing methods

Test specimen

In choosing a test specimen for studying DIC image

processing methods, there is a balance between quantitative

yet trivial specimens such as latex spheres, to complicated

biological specimens which can best be appraised qualita-

tively, based on a knowledge of expected biological features.

Particularly for segmentation of specimen features, the

statistics and parameters used must be customised to the

morphological characteristics of the class of specimens

being examined. For this study, we chose to use plant

chromosomes, as our emphasis is on creating qualitative

techniques for visualization of cell morphology.

Integration

The obvious mathematical approach to recover a function

from its gradient is integration. DIC effectively provides an

optical differentiation. The DIC image is related to the phase

gradient of the specimen, and the ability of the DIC system

to resolve small differences in specimen phase is related to

the amount of optical shear introduced by the DIC prism

geometry (Pluta, 1989). In the imaging plane, the direction

of differentiation is determined by the orientation of the

Wollaston prism, and for DIC, this is often set at 458 to the

lateral axes of the image. The first step in obtaining an

accurate integration is to align the direction of shear or

differentiation with one of the Cartesian axes of the digitized

image. In our case, we have chosen to align the shear angle,

and thus the direction of differentiation, to be parallel with

the x axis of our image.
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Fig. 1. One-dimensional model of a specimen feature. The shading

specifies a range of intensities that are to be rendered transparent

during volume visualization. A simple object is modelled in (a),

with the shading showing how easily background signal can be

selected to appear as transparent. Taking (a) to be a phase object,

(b) shows the DIC case, where the best transparency range possible

overlaps both the background and any details that may exist in the

middle of the object, indicating that a more sophisticated

transparency function is needed. The result of a Hilbert transform

on the DIC signal is shown in (c), indicating that a background

transparency threshold can now be set without obscuring details

from the middle region of the object. In all cases the left vertical

axis is in arbitrary mathematical units, and the right vertical axis is

normalized for an eight-bit greyscale image.
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The integration may then be applied horizontally, line by

line, to the digital image. Each line integrated will have an

uncertainty from small errors in pixel values and an

unknown constant of integration, which is lost by the

differential imaging method. This constant will probably be

different for each line, producing horizontal streaking in the

image. In addition, integration acts as a low pass filter,

suppressing high spatial frequency information in the image.

Hilbert transform

Turning to a spatial frequency analysis, a (real space)

differentiation corresponds to a multiplication by the value

of the spatial frequency parallel to the shear for each point

in frequency space. Integration is then just the inverse,

namely division by the spatial frequency. Both of these

processes are antisymmetric (or odd) but the division

selectively attenuates higher frequency components. What

is needed is an antisymmetric transform or process that

does not change the relative balance of the various

frequency components. Such a transform exists and is

known as the Hilbert transform (Bracewell, 1978; Oppen-

heim & Schafer, 1989). In 1D real space, the Hilbert

transform H(f(x)) is defined as

H{f (x)} � f̂ (x) � 1

p

�1

21

f (x 0)
(x 0 2 x)

dx 0: �1�

In Fourier space the apparent problems with the above

singular integral disappear and the Hilbert transform results

from a simple multiplication by a signum function:

F(s) �
�1

21
f (s) exp( 2 2pisx)dx; �2�

F̂(s) �
�1

21
f̂ (s) exp( 2 2pisx)dx; �3�

F̂(s) � isgn(s)F(s); �4�

where s is the spatial frequency, and sgn(s) is the signum

function, which is equal to 1 1 for positive s and 2 1 for

negative s.

In essence, the Hilbert transform keeps all the positive

frequency components the same but reverses the sign of all

the negative frequency components. Effectively, this makes

the image features symmetric, removing the asymmetrical

highlight and shading of objects. A simulation in one

dimension is shown in Fig. 1(c). Note there is some ringing

on either side of the peaks in the phase gradient. In fact the

ringing is mainly due to the initial edge enhancement

afforded by the derivative operation of the DIC optical

system.

In two dimensions the Hilbert transform is not uniquely

defined because the line between the positive and negative

regions of the associated 2D signum function may have any

orientation. In practice we choose the line orientation to be

perpendicular to the DIC shear direction because it

corresponds to the direction used by the integration

method, and gives optimal results. The extension of the

Hilbert transform into two dimensions is not well known in

the area of digital image processing but it does occur

frequently in the Fourier based analysis of 2D fringe

patterns. An early use of what is essentially a 2D Hilbert

transform occurs in Bone et al. (1986). In that instance the

transform method was not actually called the Hilbert

transform, but it can be shown to be essentially the

same.

Fig. 2. Image processing of DIC images. (a) An unprocessed confocal transmission DIC image of metaphase chromosomes from an orchid root

tip preparation illustrates the typical shading gradients that make standard feature extraction and 3D visualization techniques unusable. (b)

The same image after line integration along the horizontal axis shows streaking due to the unknown constant of integration for each line. (c)

The same image after applying a 2D Hilbert transform demonstrates that the chromosome features now could be isolated from the

background using simple thresholding. Scale bar � 2 mm.
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The implementation of the 2D Hilbert transform for

discretely sampled (image) data is shown schematically in

Fig. 3. It is possible to implement an approximate Hilbert

transform in real space using a convolution kernel

(Oppenheim & Schafer, 1989; Chim & Kino, 1992) as

implied by Eq. (1), but we chose the Fourier method implied

by Eq. (4) for the images shown in this paper. An outline of

the process (assuming the direction of differentiation is

parallel to the x-axis) follows:

X fast Fourier transform (FFT) the image;

X multiply both the real and imaginary parts of the FFT

by the Hilbert frequency response image (which

consists of 2 1 for y , 0, 0 at y � 0, 1 1 for y . 0);

X swap the resultant real and imaginary parts;

X inverse FFT and take the real part as the new image

(the imaginary part is essentially zero, if the Nyquist

frequency components are correctly assigned, see for

example Larkin et al., 1997).

After applying the Hilbert transform to each 2D slice of

our 3D datasets, we assembled 3D representations using

volume rendering software, which in our case was Voxel-

View (Vital Images, Plymouth, Minnesota, U.S.A.).

Results and discussion

These image processing methods were applied to our DIC

images, recorded in both confocal and conventional

transmission, as part of our ongoing confocal transmission

microscopy research. Theoretical investigations and experi-

mental work by our group indicate that the imaging

properties of confocal and conventional transmission DIC

are similar in nature, but the confocal case indicates a

possibility of increased axial resolution (Dixon & Cogswell,

1995), along with better contrast.

The results of our initial 2D line integration approach are

shown in Fig. 2(b). There are two clear problems with this

method. Firstly, the image shows unacceptable horizontal

streaking. This may be attributed to the unknown constant

of integration, which varies line by line. In addition, the

image after integration is considerably blurred in contrast

with the original, as is to be expected due to the low-pass

filtering effect of integration.

The horizontal streaking problem may be dealt with by

further developing directional integration in conjunction

with an iterative energy minimization technique (Feineigle

et al., 1996). Alternatively, directional integration may be

combined with iterative deconvolution (Kam, 1998). This

last method requires calibration using a measurement of the

shear produced by the DIC prism, and does not completely

eliminate the streaks. Both methods produce the smoothing

effect inherent to integration.

Applying a Hilbert transform gives a markedly improved

result (Fig. 2c) compared with straightforward directional

integration. The Hilbert transform produces a clear contrast

between the features and the background. There is perhaps

a slight ringing around the boundaries of the chromosomes

(which is in agreement with the 1D simulation in Fig. 1).

However, this is removed outside the boundaries for

visualization using a transparency function modulated by

intensity, as it is of lower intensity than the features. In our

experience, the Hilbert transform has produced similar

quality results across numerous DIC datasets.

The Hilbert transform may be compared with the

variance (Feineigle et al., 1996) in that it is a simple single

pass computation that transforms the bas relief appearance

into an intensity. However, the variance only highlights the

edges of specimen features, whereas, within regions of

higher phase, the Hilbert transform always has intensity

levels higher than the background (see Fig. 1c). This makes

the Hilbert transform more useful for 3D visualization than

the variance.

Other more advanced techniques for reconstructing the

phase from DIC images include Wiener filtered deconvolution

(van Munster et al., 1997) and rotational diversity (Preza

et al., 1998). Both these methods use quantitative models of

the DIC imaging system in an effort to accurately restore the

phase. Wiener filtered deconvolution requires a measurement

of the DIC prism shear, and involves a trade-off between noise

and high and low frequency components in the image. It also

assumes there is no absorption in the specimen and that DIC

has a linear response to phase in the specimen, which are

generally not valid assumptions for complex biological

objects at high numerical aperture. The rotational diversity

technique involves taking multiple images of the specimen at

differing rotations with respect to the DIC shear angle and

then combining them using iterative optimization against the

imaging model. This overcomes the loss of information for

features perpendicular to the shear, a drawback to DIC

imaging not addressed by other methods.

By contrast, the Hilbert transform is not necessarily a
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Fig. 3. Algorithm for the 2D Hilbert transform. This assumes the

DIC shear angle is parallel with the x axis. `Re' indicates the real

part of the complex Fourier image, and `Im' indicates the

imaginary part. The middle step shows a multiplication of the real

and imaginary parts by the Hilbert mask (a 2D step function).
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quantitatively accurate technique, such as integration or

deconvolution might be. However, the images recorded

using DIC are initially a mixture of non-linear phase and

amplitude information. In these qualitative conditions it

seems appropriate to use an image processing method that

does not attenuate features of interest, namely high spatial

frequency information and contrast of specimen objects

from the background.

In terms of the technique itself, the Hilbert transform has

the advantages that it requires no optical modification to

the microscope, it is a simple single pass computation, and it

does not require calibration for the shear of the DIC prism.

3D visualization

The Hilbert transform may be applied in turn to each 2D

slice of a 3D dataset. A visualization of one such dataset is

shown in Fig. 4, produced using the Hilbert transform and

selective opacity based on intensity. The 3D images are from

a focus series of orchid root tip metaphase chromosomes (of

which Fig. 2a is one optical section). Comparison between

2D slices and the 3D visualization indicates that subtle

structure available in the dataset is being borne out by the

visualization. In particular, changes in phase along the z

axis are clearly resolved. This fine detail was validated as

being accurate by comparison with the features appearing

in different z planes within the original 2D image slices

(Fig. 5). This is especially evident when the dataset is

rotated in an animation.

Conclusion

We have demonstrated that the Hilbert transform is a

useful qualitative technique for effective 3D visualization of

transmission DIC datasets. It overcomes the problems of

streaking and high spatial frequency loss that occur in

line-by-line integration techniques and it can be used for

images of complex biological specimens that contain both

phase and amplitude information. Because of its simplicity,

the Hilbert transform technique can rapidly be applied to

DIC datasets comprised of multiple focus planes using

batched post-processing. This holds promise for future

applications for 3D visualization of live-cell processes over

time.
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Fig. 4. A 3D visualization of a DIC through-focus series dataset (of

which Fig. 2a is one optical section). A Hilbert transform was

performed on each 2D slice in the stack. During visualization

selective opacity was applied to voxels (3D pixels) according to their

intensity. Horizontal scale is the same as Fig. 2, the volume height

is 3.6 mm.

Fig. 5. Selected unprocessed 2D slices from the 3D dataset used in Fig. 4, cropped to highlight features that change through focus that are

also clearly visible in the 3D visualization. This demonstrates that these fine details are preserved in the visualization. The three slices shown

are at focal depths of 0.6 mm, 1.2 mm and 1.8 mm. The corresponding chromosome in Fig. 4 is in the middle right of the image.
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